

Hardware Abstraction Layer (HAL) Library Reference

Guide

Version 1.4

Contents
Overview ... 2

Installation Location .. 2

/usr/local/lib/vmxpi .. 2

/usr/local/include/vmxpi .. 2

/usr/local/src/vmxpi/hal_cpp_examples .. 2

/usr/local/src/vmxpi/hal_java_examples ... 2

/usr/local/src/vmxpi/hal_csharp_examples ... 2

/usr/local/src/vmxpi/hal_python_examples .. 3

Installing/Updating the VMX-pi HAL ... 3

IO Resources and Channels ... 3

Introduction to IO Resources .. 3

Introduction to IO Channels .. 5

Allocating and Configuring IO Resources .. 6

Using Resources .. 7

Relevant Examples .. 7

Inertial Measurement Unit (IMU) /Attitude & Heading Reference System (AHRS) 7

Relevant Examples .. 7

CAN Bus ... 8

Relevant Examples .. 8

Receive Streams .. 8

CAN IDs .. 8

Acceptance Masks ... 8

Acceptance Filters ... 9

Acceptance Mask/Filter Examples .. 9

VMX-pi Hardware Abstraction Layer (HAL) Reference Guide (version 1.4) 2

2

Overview
The VMX-pi HAL is an Application Programming Interface (API) providing robot applications access to all

VMX-pi capabilities.

The VMX-pi HAL is implemented as set of shared libraries for C++, Java, C# and Python.

C++ applications must be compiled with the GCC C++ compiler in order to use the VMX-pi HAL.

Java applications should be compiled with the Java 1.8 compiler in order to use the VMX-pi HAL.

C# applications should be compiled with the Mono C# compiler in order to use the VMX-pi HAL.

NOTE: The standard Raspbian Stretch image includes all compilers by default except for the Mono C#

compiler. This can be installed via the following linux command-line commands:

sudo apt-get -y install mono-runtime

Installation Location

/usr/local/lib/vmxpi
This directory contains the installed shared libraries for use by C++, Java, C# and Python Applications, as

follows:

Language Library Files(s)

C++ libvmxpi_hal_cpp.so

Java libvmxpi_hal_java.so, vmxpi_hal_java.jar

C# libvmxpi_hal_csharp.so, vmxpi_hal_csharp.dll

Python _vmxpi_hal_python.so, vmxpi_hal_python.py

/usr/local/include/vmxpi
This directory contains the installed header (.h) files for use by C++ applications.

/usr/local/src/vmxpi/hal_cpp_examples
This directory contains various sub-directories, one for each of the C++ VMX-pi HAL samples.

Each subdirectory contains a make file. “make” to build the sample, “make run” to run the sample.

/usr/local/src/vmxpi/hal_java_examples
This directory contains various sub-directories, one for each of the Java VMX-pi HAL samples. Each

subdirectory contains a make file. “make” to build the sample, “make run” to run the sample.

/usr/local/src/vmxpi/hal_csharp_examples
This directory contains various sub-directories, one for each of the C# VMX-pi HAL samples. Each

subdirectory contains a make file. “make” to build the sample, “make run” to run the sample.

VMX-pi Hardware Abstraction Layer (HAL) Reference Guide (version 1.4) 3

3

/usr/local/src/vmxpi/hal_python_examples
This directory contains various sub-directories, one for each of the Python VMX-pi HAL samples. Each

subdirectory contains a make file. “make” to build the sample, “make run” to run the sample.

Installing/Updating the VMX-pi HAL
The VMX-pi HAL can be easily installed (or updated) via the Kauai Labs apt server.

Instructions for installing/updating the HAL libraries is at: https://www.kauailabs.com/apt/

IO Resources and Channels

Introduction to IO Resources
VMX-pi IO Resources are electronic circuits (or software algorithms) that implement a well-defined

function on an electrical signal and have one or more ports.

Resource Type Function Number of Ports

Digital Input Detects high and low levels 1 Digital Input Port

Digital Output Sends high and levels 1 Digital Output Port

PWM Generator Sends alternating high and low
levels at a frequency and duty
cycle

1 (HighCurrent DIO or
CommDIO) or 1 or 2 (FlexDIO)
Digital Output Ports

PWM Capture Measures the frequency and
duty cycle of a signal from an
external PWM generator

1 (FlexDIO) Input Port

Quadrature Encoder decoder Measure the number of
encoder pulses in either 1x, 2x
or 4x mode

2 (FlexDIO) Input Ports

0 1 2 3 3 4 5 6

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

26 27 28 29 30 31 32 33

FlexDIO

FlexD
IO

H
igh

C
u

rre
n

tD
IO

A
n

alogIO

CommDIO

VMX-pi Hardware Abstraction Layer (HAL) Reference Guide (version 1.4) 4

4

Interrupt Generates an asynchronous
notification when a transition of
a signal level (e.g., from low to
high) occurs

1 Digital Input Port

Analog Accumulator Samples and Accumulates an
Analog Input signal level

1 Analog Input Port

Analog Trigger Generates an Interrupt, using
the output from an Analog
Accumulator as an input

1 (an Analog Accumulator)
Input Port

I2C Implements the Inter-
Integrated Circuit (i2C) digital
communications protocol

1 Digital Output Port, 1 Digital
Open Drain Port

UART Implements the Universal
Asynchronous
Receiver/Transmitter (UART)
digital communications protocol

1 Digital Input Port, 1 Digital
Output Port

SPI Implements the Serial
Peripheral Interface (SPI) digital
communications protocol

3 Digital Ouptut Ports, 1 Digital
Input Ports

IO Resource Ports

Each Resource has one or more Ports, each of which can have one VMX-pi channel routed to it.

Some VMX-pi resources support multiple ports.

Single-channel IO Resource Routing

Many Resources provide a function on a single Channel, and thus only a single Channel is routed to the

Resource.

Multi-channel IO Resource Routing

Certain Resources provide a function on multiple Channels, and thus may have multiple Channels routed

to the Resource.

Multi-channel function IO Resources

Resources providing “multi-channel functions” require that VMX-pi Channels be routed to all Ports in

order to execute the Resource function (e.g., UART Resources require a channel routed to the “TX”

function and a different channel routed to the “RX” function).

Multi-instance IO Resources

Other “multi-instance” Resources can perform multiple instances of the same function, and therefore do

not necessarily require Channels to be routed to all Ports in order to operate (e.g, FlexDIO PWM

Generator resources can output independent PWM signals onto 2 channels).

VMX-pi Hardware Abstraction Layer (HAL) Reference Guide (version 1.4) 5

5

Shared FlexDIO Timer Resource Limits

Certain Resources used with FlexDIO Channels (PWM Generation, PWM Capture and Quadrature

Encoder Decode) are implemented by Hardware Timers; each timer may be routed to only 2 specific

FlexDIO Channels.

 FlexDIO
Ch0/1

FlexDIO
Ch2/3

FlexDIO
Ch4/5

FlexDIO
Ch6/7

FlexDIO
Ch8/9

FlexDIO Ch
10/11

PWM
Generation

0 and/or 1 2 and/or 3 4 and/or 5 6 and/or 7 8 and/or 9 10 and/or
11

Quad
Encoder
Decode

0 and 1 2 and 3 4 and 5 6 and 7 8 and 9 10 and 11

PWM
Capture

0 or 1 2 or 3 4 or 5 6 or 7 8 or 9 10 or 11

Because FlexDIO Timer Resources are shared, it is not possible for a single pair of adjacent FlexDIO

Channels to be used with a different resource. For example, it is not possible for FlexDIO Channel 0 to

be used for PWM output and FlexDIO Channel 1 to be used for PWM Capture.

Introduction to IO Channels

Table 1 VMX-pi IO Channels and IO Resources

Resource Flex DIO HighCurrent DIO Analog
Inputs

Comm DIO Maximum
Count

Channel #s All
Channels

12-21 22-25 26-33 34

Digital Output All
Channels

When “Output” jumper
enabled – all channels
controlled by one jumper

-- Channels 26-28,
30-31, 33

28

Digital Input All
Channels

When “Output” Jumper
disabled – all channels
controlled by one jumper

-- Channels 29, 32 24

PWM
Generation

All
Channels

When “Output” jumper
enabled – all channels
controlled by one jumper

-- All Digital
Output channels

28

HW Quad
Encoder
decode

Channels 0-
9

-- -- -- 5

PWM Capture All
Channels
(up to 6
total)

-- -- -- 6

I2C -- -- -- Channels 26-27 1

VMX-pi Hardware Abstraction Layer (HAL) Reference Guide (version 1.4) 6

6

UART -- -- -- Channels 28-29 1

SPI -- -- -- Channels 30-33 1

Analog
Accumulation

-- -- All
Channels

-- 4

Analog Trigger -- -- All
Channels

-- 4

Flex DIO Channels (channels 0-11)

Each Flex DIO Channel may be a Digital Input or Digital Output, depending upon software configuration,

and may also be used to decode Quadrature Encoder signals, generate PWM signals, capture PWM

signals, or generate Interrupts.

HighCurrent DIO Channels (channels 12-21)

High Current DIO Channels may either all be in “input mode” or “output mode”, depending upon the

HighCurrent DIO “Output” jumper.

When configured in “input mode”, each and every HighCurrent DIO Channels can be used as Digital

Inputs or Interrupt Inputs.

When configured in “output mode”, each and every HighCurrent DIO Channels can be used as Digital

Outputs or for PWM Generation.

Analog Input Channels (channels 22-25)

Analog Input Channels are used with Analog-to-Digital Converters (ADCs) to measure the analog voltage

level at a 12-bit resolution (4096 discrete values). Each input is managed by an Analog Accumulator,

which implements both oversampling and averaging.

Each Analog Input may also be routed to an Analog Trigger resource in order to generate an Interrupt.

Comm DIO Channels (channels 26-33)

Comm DIO Channels are used for digital communications using several different protocols.

Certain Comm DIO Channels are dedicated as outputs, and other Comm DIO Channels are dedicated as

inputs. When not used for protocol communication, these channels can be used as digital inputs and

outputs.

Output Comm DIO Channels behave similarly to HighCurrent DIO Channels in “output” mode.

Input Comm DIO Channels behave similarly to High Current DIO Channels in “input” mode.

Allocating and Configuring IO Resources
Although different VMX-pi IO Channels can be configured for use with several IO Resources, each IO

Channel may only be allocated to one IO Resource at a time.

VMX-pi Hardware Abstraction Layer (HAL) Reference Guide (version 1.4) 7

7

Allocate Resource

Route Channel(s) to
Resource Ports(s)

Configure Resource

Activate

Use
(change attributes [e.g.,

PWM Duty Cycle],
acquire data, transmit

signals)

Deallocate

Figure 1 VMX-pi Resource Allocation/Deallocation Flow

The VMX-pi HAL VMXIO class provides methods for easily allocating, routing, configuring and activating

channels and resources.

Using Resources
Once activated, the VMXIO class provides methods - which are specific to each VMX-pi resource type –

for interacting with an activated resource.

Relevant Source Code Examples
Many of the VMX-pi examples demonstrate how to use these methods:

IO Resource type Example

Analog Accumulator analog_inputs

Digital Input digital_inputs

Digital Output digital_outputs

Interrupt Interrupts

PWM Generator pwm_generation

Quadrature Encoders encoders

PWM Capture pwm_capture

I2C Communication i2c

SPI Communication spi

UART Communication uart

Inertial Measurement Unit (IMU) /Attitude & Heading Reference System (AHRS)
Access to the VMX-pi IMU and AHRS circuitry occurs via the VMX-pi HAL AHRS class. The AHRS class

automatically buffers the latest data allowing access to the data at any time. Additionally, applications

may register a callback for immediate notification when new data has been received.

Relevant Source Code Examples
The “imu” VMX-pi HAL example demonstrates both polled and notification-based access to IMU/AHRS

data.

https://www.kauailabs.com/public_files/vmx-pi/apidocs/hal_cpp/class_v_m_x_i_o.html
https://www.kauailabs.com/public_files/vmx-pi/apidocs/hal_cpp/class_a_h_r_s.html

VMX-pi Hardware Abstraction Layer (HAL) Reference Guide (version 1.4) 8

8

CAN Bus
Access to the VMX-pi CAN Bus Interface occurs via the VMX-pi HAL VMXCAN class.

Relevant Source Code Examples
The “can_bus_monitor” and “can_tx_loopback” VMX-pi HAL examples demonstrate CAN configuration,

data reception and data transmission.

Receive Streams
Multiple different receive “streams” can be configured for receiving CAN messages. Each stream has an

Acceptance Mask, an Acceptance Filter, and a buffer for temporarily storing CAN messages until the HAL

application is ready to consume them.

CAN IDs
Each data sender on the CAN bus must send a unique ID, often referred to as a “message ID”. There are

two types of CAN IDs: Standard and Extended.

Standard IDs

Standard IDs are 11 bits in length, and thus have a range (in hexadecimal) of 0x0 - 0x7FF.

Extended IDs

Extended IDs are 29 bits in length, and thus have a range (in hexadecimal) of 0x0 – 0x1FFFFFFF.

To limit the messages received to only those of interest and to avoid needless processing overhead to

manage them, the use of “Acceptance Masks” and “Acceptance Filters” is recommended. When used

together, Acceptance Masks and Filters can identify ranges of CAN message IDs of interest.

Acceptance Masks
Each “1” bit in the Mask corresponds to a bit position in a CAN message ID

NOTE: An Acceptance Mask of 0 will allow all messages to be received. This is not recommended due to

the potentially very high volume of messages which may be received.

Standard ID Acceptance Masks

When creating an Acceptance Mask for receiving Standard IDs, a “Standard Frame Bit” (0x40000000)

must be included, as shown below:

 // This masks in all 11 standard ID bits

uint32_t standardIdMask = 0x000007FF | VMXCAN_IS_FRAME_11BIT;

Extended ID Acceptance Mask

When creating an Acceptance Mask for receiving Extended IDs, the lowest 29 bits of the mask are used,

as shown below:

 // This masks in all 29 extended ID bits

 uint32_t extendedIdMask = 0x1FFFFFFF;

VMX-pi Hardware Abstraction Layer (HAL) Reference Guide (version 1.4) 9

9

Acceptance Filters
Acceptance Filters are used together with Acceptance Masks to receive only those CAN IDs of interest.

A CAN Message is received if all bits masked in by an Acceptance Mask match the corresponding

Acceptance Filter bit value. The following Truth Table indicates each possible case.

Filter/Mask Truth Table

Mask Bit n Filter Bit n Message Bit n Accept or Reject Bit n

0 X X Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

A simplified set of rules is this:

- If mask bit is 0: that bit is always accepted.

- If mask bit is 1: that bit is only accepted if it’s value equals that of the filter bit

Standard ID Acceptance Filters

When creating an Acceptance Filters for receiving Standard IDs, a “Standard Frame Bit” must be

included, as shown below:

 // This filter will only accept Standard IDs, since the VMXCAN_IS_FRAME_11BIT bit

(0x40000000) is set.

uint32_t standardIdFilter = 0x00000710 | VMXCAN_IS_FRAME_11BIT;

Extended ID Acceptance Filters

When creating an Acceptance Filter for receiving Extended IDs, the lowest 29 bits of the filter are used,

and the “standard id bit” (0x40000000) is not set, as shown below:

 // This filter will only accept Extended IDs, since the VMXCAN_IS_FRAME_11BIT bit is not set.

 uint32_t extendedIdFilter = 0x11092AD6;

Acceptance Mask/Filter Examples
This section contains several examples demonstrating how to receiving CAN Messages from any Cross

the Road Electronics (CTRE) Power Distribution Panel (PDP).

The PDP regularly transmits messages indicating the amount of current flowing through each output, as

well as the input battery voltage level. As documented in the PDP.cpp file (in the wpilib suite on

Github), the transmitted messages are as follows:

Message Message ID Description

STATUS1 0x08041400 Current levels of PDP outputs 1-6 (10 bits/output)

https://github.com/wpilibsuite/allwpilib/blob/master/hal/src/main/native/athena/ctre/PDP.cpp
https://github.com/wpilibsuite/allwpilib/blob/master/hal/src/main/native/athena/ctre/PDP.cpp

VMX-pi Hardware Abstraction Layer (HAL) Reference Guide (version 1.4) 10

10

STATUS2 0x08041440 Current levels of PDP outputs 7-12 (10 bits/output)

STATUS 0x08041480 Current levels of PDP output 13-16 (10 bits/output) and battery
voltage

STATUS_ENERGY 0x08041740

The source code in PDP.cpp includes the definitions of the data in each message. To convert each 10bit

current level value to amps, multiply the value by 0.125

NOTE: In the case of the PDP and other CAN devices on a FRC CAN bus, the lowest 6 bits of each

message ID are reserved as a device ID (which is unique to each type of device). This allows multiple

devices of the same type to exist on a single CAN bus.

Mask & Filter Example 1: receive only the STATUS1 message from PDP device id 3:

Acceptance Mask Acceptance Filter

0xFFFFFFFF 0x08041403

Mask & Filter Example 2: receive only the STATUS1 message from any PDP device id (0-63)

In this example, CAN message IDs 0x08041400-0x0804143F are accepted.

Therefore, the lowest 6 bits may be any value; any higher-order bits must be 0x08041400.

Acceptance Mask Acceptance Filter

0xFFFFFFFC 0x08041400

Mask & Filter Example 3: receive the STATUS1, STATUS2, STATUS3 and STATUS_ENERGY messages from

any PDP device id:

In this example, CAN message IDs 0x08041400-0x0804177F are accepted.

Acceptance Mask Acceptance Filter

0xFFFFF800 0x08041000

