

# Hardware Reference Manual

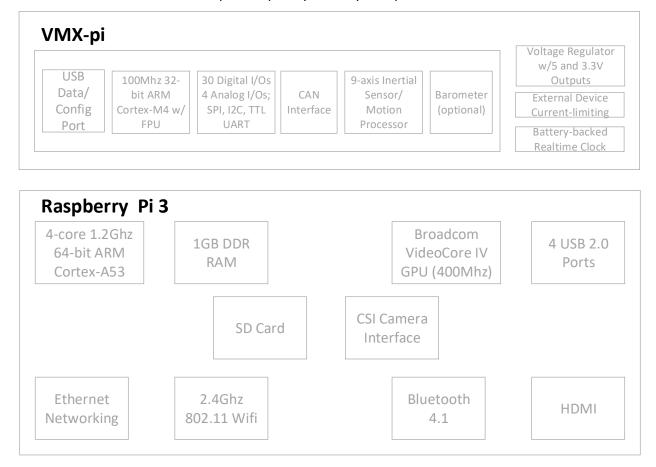
Version 1.10



Figure 1 VMX-pi configured with Raspberry Pi 3



# Contents


| Feature Summary                                    | 3  |
|----------------------------------------------------|----|
| Technical Specifications                           | 5  |
| I/O Summary                                        | 8  |
| I/O Resource Summary                               |    |
| Channel/Resource Routing                           |    |
| I/O Channel Types/Numbers                          |    |
| High Current DIO Input/Output Selection Jumper     |    |
| Power Management Scheme                            |    |
| VMX-pi Power Management                            | 14 |
| External Device Power/Signal Voltage Configuration | 16 |
| Signal Voltage Select Jumpers                      | 16 |
| Power Voltage Select Jumpers                       | 16 |
| VMX-pi I/O Signal/Logic Levels                     | 16 |
| Board-edge Connectors                              |    |
| FlexDIO Connectors (VMX Channels 0-7)              |    |
| FlexDIO Header (VMX Channels 8-11)                 | 19 |
| High-Current DIO Header (VMX Channels 12-21)       | 19 |
| Analog Input Header (VMX Channels 22-25)           |    |
| CommDIO Connectors (VMX Channels 26-33)            | 21 |
| CAN Connector                                      | 21 |
| CAN Termination Jumper                             | 21 |
| Micro-USB Connector                                | 22 |
| Input Power Connector                              | 22 |
| Battery & Real-time Clock                          | 22 |
| 40-pin Raspberry Pi Connector                      | 23 |
| Optional 5V Fan Connector                          | 23 |
| LEDs                                               | 23 |
| Buttons                                            | 24 |
| Physical Dimensions                                | 25 |



## Feature Summary

VMX-pi is designed to control a reliable, intelligent robot that is tele-operated, semi-autonomous or fully-autonomous – when combined with an inexpensive Raspberry Pi-based processor. VMX-pi is also usable as a Vision/Motion co-processor when paired with another robot controller.

The current recommended Raspberry Pi model is the "Raspberry Pi 3" (shown in picture on the cover page of this document); the Raspberry Pi Zero W may also be used although it provides only a subset of the Raspberry Pi 3 capabilities.



#### VMX-pi + Raspberry Pi 3 Key Components

Figure 2 VMX-pi & Raspberry Pi Key Components



| Component          | Function                                        | Key Attributes                                  |
|--------------------|-------------------------------------------------|-------------------------------------------------|
| Voltage Regulator  | Converts unregulated 6-16VDC to 5V & 3.3V,      | Can provide 2.1A to Raspberry                   |
| w/wide input       | up to a maximum of 3A; includes real-time       | Pi and .5A to external devices at               |
| voltage range      | under-voltage management                        | input voltages as low as 6VDC                   |
| External Device    | External 5/3.3V supplies are current limited at | Processors continue running                     |
| Current Limiting   | .5A, to ensure full power is always provided    | even when external devices                      |
| Switch & Short-    | to the Raspberry Pi processor and VMX-pi        | draw excessive power or when                    |
| circuit protection | microcontroller                                 | short-circuits occur                            |
| 5/3.3V Voltage     | Flexibly supports signaling with 5V and 3.3V    | Eliminates need for external                    |
| Translation        | external devices                                | voltage translation devices                     |
| Battery-backed     | When VMX-pi is used in environments             | Includes CR2032 battery                         |
| Real-time Clock    | without Network Time Server access,             | w/expected life of 5 years                      |
| (RTC)              | provides real-time clock for distributed sensor | before replacement                              |
|                    | data alignment and accurate log timestamps      |                                                 |
| 100Mhz 32-bit      | Implements real-time IO and timer functions,    | Field-upgradable firmware can                   |
| ARM-M4 w/FPU       | IMU sensor data fusion, CAN bus message         | be updated w/new features and                   |
| Microcontroller    | buffering and Power/Brownout Management         | bugfixes                                        |
| (STM32F411)        |                                                 |                                                 |
| 30 Digital I/Os    | Flexible digital IO support including PWM       | <ul> <li>PWM Generation on all</li> </ul>       |
| with overvoltage   | Generation on outputs, PWM Capture, Quad        | outputs                                         |
| protection         | Encoder decode, Interrupt Generation on         | <ul> <li>PWM Capture on "FlexIO"</li> </ul>     |
|                    | inputs                                          | inputs                                          |
|                    |                                                 | <ul> <li>Interrupt Generation on all</li> </ul> |
|                    |                                                 | inputs                                          |
|                    |                                                 | Quadrature Encoder decode                       |
|                    |                                                 | on 5 pairs of "FlexIO" inputs                   |
| 4 Analog I/Os with | 12-bit ADC providing 46.5k samples/sec on       | Over-sampling and Averaging                     |
| overvoltage        | each channel                                    | Engine; Analog Triggering                       |
| protection         |                                                 | supporting Interrupt generation                 |
|                    |                                                 | on Analog Inputs                                |
| CAN Interface      | CAN 2.0b transceiver and controller             | 1 mbps bus data rate supported                  |
|                    | supporting message transmission/reception       |                                                 |
|                    | and filtering                                   |                                                 |
| 9-axis Inertial    | Generates Yaw/Pitch/Roll measures as well as    | Invensense MPU-9250 and                         |
| Sensor/Motion      | Quaternions and raw gyro/accelerometer/         | navX-Technology Kauai Labs                      |
| Processor          | magnetometer data; also includes automatic      | firmware                                        |
|                    | calibration software w/flash-based storage of   |                                                 |
|                    | calibration data                                |                                                 |
| I2C Support        | 2 Comm DIO Channels can be configured for       | 400Khz I2C communication                        |
|                    | 12C communication w/built-in pullup resistors   | supported                                       |
| TTL UART Support   | 2 Comm DIO Channels can be configured for       | 115.2 kbps UART                                 |
|                    | TTL UART communication                          | communication supported                         |





| SPI Support        | 4 Comm DIO Channels can be configured for    | 8Mhz SPI communication           |
|--------------------|----------------------------------------------|----------------------------------|
|                    | SPI communication                            | supported                        |
| Locking            | Locking Power, FlexDIO and CAN connectors    | Helps ensure electrical circuits |
| Connectors         |                                              | are not affected by vibration    |
| Micro-USB          | Additional dedicated USB interface on VMX-pi | Enables remote access to IMU     |
| external interface |                                              | data, and VMX-pi                 |
|                    |                                              | configuration/firmware update    |

Table 1 VMX-pi Component Functions & Attributes

## **Technical Specifications**

VMX-pi Technical Specifications are summarized in the table below. Note that certain specifications may be improved over time due to firmware updates. For the most up-to-date technical specifications, please see the "Technical Specifications" page at http://vmx-pi.kauailabs.com.

| ELECTRICAL SPECIFICATIONS |                                                        |
|---------------------------|--------------------------------------------------------|
| Input Voltage:            | 6-16V DC                                               |
|                           | 5V, 3.3V for External Devices                          |
| Output Voltages:          | 5V for Raspberry Pi                                    |
|                           | Input Power Under-voltage Management                   |
|                           | Output Power Current Limiting/Short-circuit Protection |
| Protection Features:      | Input Signal Over-voltage Protection                   |
| Communications Interface: | USB, I2C, SPI, CAN, UART                               |
| Power Connector:          | 2-Pin JST VH Connector                                 |
|                           | USB Micro-B (can provide standalone power to VMX-      |
| USB Connector:            | pi microcontroller)                                    |

#### IMU PERFORMANCE SPECIFICATIONS

Note: Certain IMU performance specifications are only valid after a start-up gyroscope/accelerometer calibration period, during which time the VMX-pi circuit board must be held still.

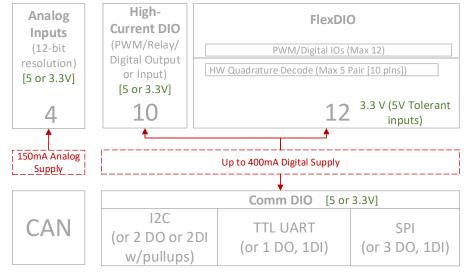


| Startup Calibration Period:                           | 15 seconds                  |
|-------------------------------------------------------|-----------------------------|
| Gyro Sensitivity:                                     | +/- 2000 degrees/sec        |
| Accel Sensitivity:                                    | +/- 2 g                     |
| Magnetometer Sensitivity:                             | 1.3 Gauss                   |
| Yaw angle accuracy:                                   | ~1 degree of drift/minute   |
| Yaw angle accuracy (when still):                      | ~.25 degree of drift/minute |
| Orientation Data Update Rate:                         | 4-200 Hz                    |
| Magnetometer Raw Update Rate:                         | 4 Hz                        |
| Magnetometer Angular Accuracy:                        | +/- 2 degrees               |
| Pitch/Roll Angular Accuracy:                          | +/- 1.5 degrees             |
| ANALOG INPUT SPECIFICATIONS                           |                             |
| Number of Channels:                                   | 4                           |
| Resolution:                                           | 12 bits                     |
| Per-channel Sampling Rate:                            | 46.5K samples/sec           |
| DIGITAL IO SPECIFICATIONS                             |                             |
| Total Number of Channels:                             | 30                          |
| Number of Input-capable & Interrupt-capable Channels: | 26                          |
| Number of Output-capable & PWM-capable Channels:      | 28                          |



| Number of Quadrature Encoder Channel Pairs |             |
|--------------------------------------------|-------------|
| (Hardware-decode):                         | 5           |
| Number of PWM Capture Inputs               | 6           |
| DIGITAL COMMUNICATION SPECIFICATIONS       |             |
| CAN Protocol (2.0b)                        | 1mbps       |
| SPI Protocol                               | 8 Mhz       |
| I2C Protocol                               | 400 kHz     |
| USB Protocol                               | 12 mbps     |
| UART Protocol                              | 115,200 bps |




## I/O Summary

VMX-pi I/O Summary

- 30 Digital I/O Channels
  - 12 "FlexDIOs"; PWM-capable, H/W decode of 5 Quadrature Encoders
  - 10 "High Current DIOs": either all inputs or all PWM-capable outputs
  - 8 "Comm DIOs" (6 PWM-capable outputs, 4 inputs) supporting SPI, I2C

and UART or Digital I/O functions

- 4 Analog Input Channels
- Dedicated CAN Interface



#### Figure 3 VMX-pi IO Summary

FlexDIO Channels: These channels drive 3.3V, are 5V tolerant when used as inputs, and each channel is individually software configurable as input or output channel. FlexDIO channels have a lower output current drive than other channel types, and support advanced timer functions including decoding of signals from quadrature encoders.

High-Current DIO Channels: These channels drive 3.3V or 5V (jumper-configurable), and are jumperconfigurable to be either all inputs or all outputs. High-Current DIO channels provided enhanced current-drive capabilities allowing them to be used to drive relays as well as motor controllers.

Analog Input Channels: These channels accept 3.3V or 5V input signals.

Comm DIO Channels: These channels drive 3.3V or 5V (jumper-configurable); some are fixed as input channels, and some are as fixed output channels. These channels support a medium-current drive capability to support communication across extended distances, subject to the restrictions of each protocol; these channels are designed to support high-bandwidth communication rates.



CAN Interface: The CAN interface supports a positive and negative differential signal pair. NOTE: The two CAN signals are not referred to as "I/O Channels" and are not referenced by "VMX-pi Channel Numbers" below.

| Table 2 | VMX I/C | Channel C | Туре | Summary |
|---------|---------|-----------|------|---------|
|---------|---------|-----------|------|---------|

| Туре      | Count | S/W<br>Direction<br>Select | High<br>Current/Jumper<br>Direction Select | Analog<br>Input | Digital<br>Comm |
|-----------|-------|----------------------------|--------------------------------------------|-----------------|-----------------|
| FlexDIO   | 12    | Yes                        |                                            |                 |                 |
| HiCurrDIO | 10    |                            | Yes                                        |                 |                 |
| CommDIO   | 8     |                            |                                            |                 | Yes             |
| AnalogIn  | 4     |                            |                                            | Yes             |                 |



## I/O Resource Summary

Each VMX-pi channel can be used for multiple functions. This flexibility functionality is provided by a set of **I/O Resources**. Each VMX-pi channel may be routed (under software control) to different I/O resources, depending upon the VMX-pi application requirements.

| Туре           | Description                                                        | Typical Use                                                                           |
|----------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Digital Input  | Detects current signal digital level (high/low)                    | Reading state of a button                                                             |
| Digital Output | Transmits current signal digital level (high/low)                  | Triggering a Relay                                                                    |
| PWM Generator  | Transmits periodic pulses with configurable period and pulse-width | Controlling a motor or servo                                                          |
| PWM Capture    | Measures pulse with (frequency and duty cycle) of periodic pulses  | Reading current pulse width<br>from servo controller                                  |
| Interrupt      | Generates Interrupts on selected signal<br>edge transitions        | Counting "ticks" of an ultrasonic distance sensor                                     |
| Accumulator    | Performs Oversampling/Averaging on an Analog Input                 | Noise-removal and resolution<br>enhancement on inputs from an<br>analog potentiometer |
| Analog Trigger | Generates Interrupts on analog input<br>high/low level transitions | Counting "ticks" of an analog sensor input                                            |
| UART           | TX/RX line data transceiver                                        | Communication with an external GPS                                                    |
| SPI            | CLK/MOSI/MISO/CS line data transceiver                             | Communication with an external IMU sensor                                             |
| I2C            | SCL/SDA line data transceiver                                      | Communication with an external LIDAR sensor                                           |

#### Table 3 VMX-pi Resource Summary

Many I/O Resource Types support a single I/O Channel; certain Resource Types may support more than 1 channel (e.g., a Quadrature Encoder Resource supports two I/O Channels, one for the A signal and another for the B signal).

## Channel/Resource Routing

To use an I/O Resource, one or more I/O Channels must be routed to the resource. Each I/O Channel Type may be routed to the following I/O Resources:

| Туре                      | DIO/<br>PWM | Encoder | PWM<br>Capture | Interrupt  | Accumulator | Analog<br>Trigger | UART | SPI | 12C |
|---------------------------|-------------|---------|----------------|------------|-------------|-------------------|------|-----|-----|
| # Chan<br>per<br>Resource | 1           | 2       | 1              | 1          | 1           | 1                 | 2    | 4   | 2   |
| FlexDIO<br>HiCurrDIO      | Yes<br>Yes  | Yes     | Yes            | Yes<br>Yes |             |                   |      |     |     |



| CommDIO Yes | Yes |     |     | Yes | Yes | Yes |
|-------------|-----|-----|-----|-----|-----|-----|
| AnalogIn    | Yes | Yes | Yes |     |     |     |

## I/O Channel Types/Numbers

VMX-pi follows a Channel-numbering scheme for all I/O connectors (except the signals on the CAN connector), allowing application software to address and reconfigure the functions on each channel. Note that all Channel Numbers start from 0, and begin with FlexDIO connectors on the bottom-right of the below diagram and increase in a counter-clockwise direction.

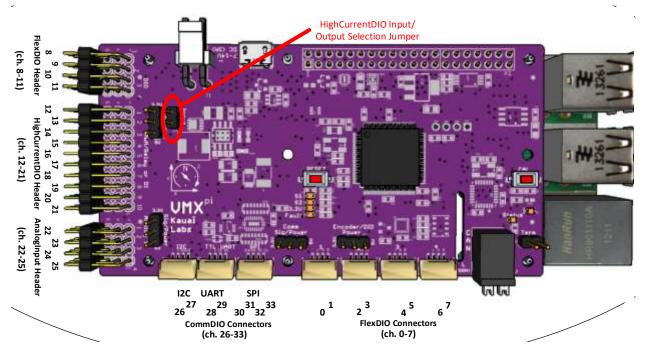
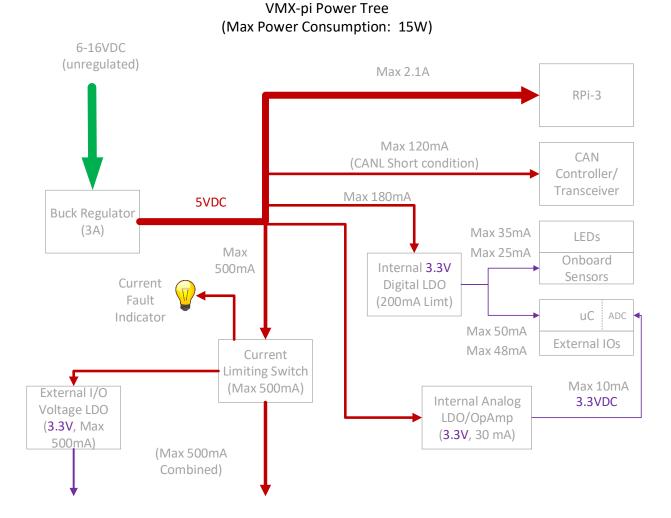



Figure 4 VMX-pi Channel Types and Numbers

| I/O Channel Type    | Connector | Channel | Location         |
|---------------------|-----------|---------|------------------|
|                     | Туре      | Numbers |                  |
| Flex DIO Connectors | Connector | 0-7     | Bottom-right     |
| Flex DIO Header     | Header    | 8-11    | Left-side Top    |
| High Current DIO    | Header    | 12-21   | Left-side mid    |
| Analog Input        | Header    | 22-25   | Left-side bottom |
| Comm DIO            | Connector | 26-33   | Bottom-left      |




## High Current DIO Input/Output Selection Jumper

The entire bank of High Current DIOs can be either all inputs, or all outputs. This selection is performed in hardware via the High Current DIO Input/Output Selection Jumper. If the jumper is present, all High Current DIOs function as outputs, otherwise they function as inputs.



## Power Management Scheme

To minimize the number of system components, VMX-pi provides integrated voltage regulators; the input power source may be a wide range of DC input voltages (e.g., from a battery) and outputs 5VDC to the Raspberry Pi, as well as 5VDC and 3.3V DC External Devices.



VMX-pi is powered by a single 6-16VDC unregulated voltage source, and the devices it powers may consume up to 3 Amps (15 Watts). The VMX-pi voltage regulators are designed to output the following maximum current levels:

| Max. Current | Purpose                                                                                              |
|--------------|------------------------------------------------------------------------------------------------------|
| 2.1 Amps     | Raspberry Pi Processor & USB peripheral power                                                        |
| .4 Amps      | VMX-pi microcontroller and onboard circuitry power (including IMU, CAN and signal-driving circuitry) |
| .5 Amps      | VMX-pi External Device power                                                                         |



#### VMX-pi Power Management

VMX-pi Power Management ensures reasonable system behavior in exceptional events including Input Power under-voltage, and also external device power over-current and short-circuit conditions.

#### External Device Over-current and short-circuit management

When the VMX-pi 5V and 3.3V regulators that provide power to External Devices detect a current draw from those external devices exceeding the maximum current level (.5A), current is either limited to the maximum, or alternatively the current is completely removed, depending upon software configuration. This design ensures that sufficient power is reserved for proper operation of the VMX-pi microcontroller and the Raspberry Pi processor and its USB peripherals - even when External Device short-circuit conditions occur.

### Input Power under-voltage management

In Input Power under-voltage situations, VMX-pi is designed to preserve power to the VMX-pi microcontroller and the Raspberry Pi processor, at the expense of any peripherals which may be attached. Specifically, VMX-pi's power management scheme prioritizes the Raspberry PI power supply first, then the VMX-pi microcontroller second, and lowest priority is given to any External Devices. This design ensures that critical components are able to maintain state (e.g., software algorithms, IMU calibration coefficients, or buffers of recently received CAN packets).

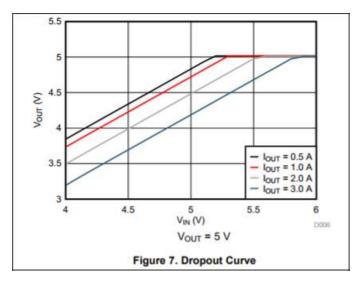



Figure 5 VMX-pi power supply voltage regulator dropout curve

As shown in the VMX-pi voltage regulator dropout curve above, the VMX-pi voltage regulator can guarantee the full 3A (15W) power output as long the Input Power voltage is above 5.75V.

The Raspberry Pi 3 USB power supply – which is designed to power external USB devices - will brown out when the VMX-pi 5V voltage regulator output drops below 4.75V. At the maximum 3A load, this corresponds to a VMX-pi input voltage of 5.75V. For a more typical lightly-loaded Raspberry Pi consuming 1A, this corresponds to a minimum input voltage of 5V. Note also that the Raspberry Pi processor will continue to function until the VMX-pi input voltage reaches 4.5V, and the VMX-pi



microcontroller will continue to function until the VMX-pi input voltage reaches 4V – however these extremely low voltages are insufficient to support fully-operational scenarios, and can only main processor life-support. *Therefore, the minimum required voltage is 5.75V.* 

To manage low Input Power voltage situations typically occurring in battery-operated scenarios, when VMX-pi detects Input Power voltage levels below 5.75V, the External Device power supply output (e.g., power supplied to power pins on FlexDIO, HighCurrentDIO, AnalogInput and CommDIO headers/connectors) is temporarily disabled until the input voltage rises again to approximately 5.85V. This ensures the full 3A output current remains available to the Raspberry Pi and the VMX-pi microcontroller.

| Input Power<br>Voltage | VMX-pi external<br>devices | Raspberry Pi<br>external USB<br>devices | Raspberry Pi<br>Processor | VMX-pi<br>Microcontroller |
|------------------------|----------------------------|-----------------------------------------|---------------------------|---------------------------|
| 5.75V and              | ОК                         | ОК                                      | ОК                        | ОК                        |
| above (at              |                            |                                         |                           |                           |
| full 3A load)          |                            |                                         |                           |                           |
| Below                  | External device            | ОК                                      | ОК                        | ОК                        |
| 5.75V                  | Power rail disabled        |                                         |                           |                           |
| Below                  | External device            | Insufficient Power                      | ОК                        | ОК                        |
| 4.75V                  | Power rail disabled        |                                         |                           |                           |
| Below 4.5V             | External device            | Insufficient Power                      | Insufficient Power        | ОК                        |
|                        | Power rail disabled        |                                         |                           |                           |
| Below 4V               | External device            | Insufficient Power                      | Insufficient Power        | Insufficient Power        |
|                        | Power rail disabled        |                                         |                           |                           |

The system behavior at various Input Power voltage levels is summarized below:



## External Device Power/Signal Voltage Configuration

VMX-pi provides flexibility in the voltage used to power and exchange signals with External Devices. Several onboard jumpers allow various configurations to address many system configurations, typically eliminating the need for external voltage translation devices.

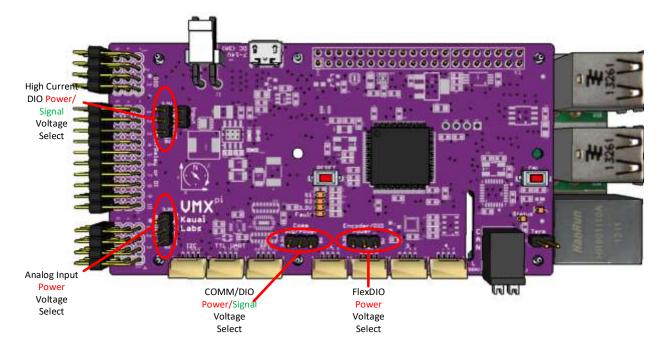



Figure 6 VMX-pi Signal/Power Voltage Select Jumpers

#### Signal Voltage Select Jumpers

Either 5 or 3.3V output signal levels may be selected for High Current and Comm DIOs.

Note 1: Flex DIOs are fixed at 3.3V output levels.

Note 2: All inputs are tolerant of higher voltages, see Table 5 below.

## Power Voltage Select Jumpers

Either 5 or 3.3V power output for external devices may be selected for Flex, High Current and Comm DIOs and also for power pins on the Analog Input block

#### VMX-pi I/O Signal/Logic Levels

VMX-pi Analog and Digital I/O channels are designed to support nominal signal levels in both 3.3V and 5V systems, and also include circuit protection circuitry to handle cases when input signal levels exceed the expected range.



| Table 4 | Digital | Channel | output | signal | drive | current summary |
|---------|---------|---------|--------|--------|-------|-----------------|
|---------|---------|---------|--------|--------|-------|-----------------|

| Channel Type     | Max. Drive Current |
|------------------|--------------------|
| FlexDIO          | 4mA (@3.3V)        |
| High-Current DIO | 12mA (@5V)         |
| CommDIO          | 10mA (@3.3V)       |
| CAN              | 45mA               |

Table 5 Analog/Digital Input Channel signal over-voltage protection summary

| Channel Type     | Vmax(DC)          |
|------------------|-------------------|
| FlexDIO          | 12V               |
| High-Current DIO | 12V               |
| Analog Inputs    | 12V (Vmin = -12V) |
| CommDIO          | 6V                |
| CAN              | 58V               |

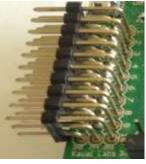
#### Table 6 Digital Channel signal Logic Level summary

| Channel Type     | Input/Output<br>Logic Levels | Output V maxLow/minHigh                               |
|------------------|------------------------------|-------------------------------------------------------|
| FlexDIO          | 3.3V TTL/CMOS                | 0.4V, 2.4V @4mA [3.3V]                                |
| High-Current DIO | 3.3V/5V CMOS                 | 0.24V, 4.75v @1mA [5V<br>mode]                        |
| CommDIO          | 3.3V/5V CMOS                 | 1.5V, 3.3V @4mA [5V mode]<br>.8V, 2V @4mA [3.3V mode] |

#### Table 7 Digital Channel Pull-up/Pull-down resistance summary

| Channel Type                | Pull Direction            | Resistance |
|-----------------------------|---------------------------|------------|
| FlexDIO                     | Up, Down or Floating (s/w | 50k-ohm    |
|                             | selectable)               |            |
| High-Current DIO            | Pull-down                 | 40k-ohm    |
| CommDIO I2C (when used as   | Pull-up                   | 2.2k-ohm   |
| input)                      |                           |            |
| CommDIO (UART when used as  | Floating                  | n/a        |
| a digital input channel)    |                           |            |
| CommDIO SPI (when used as a | Floating                  | n/a        |
| digital input channel)      |                           |            |

Note that CommDIO input signals are floating in support of high-bandwidth communications. In certain applications, external pull-up resistors may be used but are not typically required.




## Board-edge Connectors

VMX-pi connectors are oriented at right-angles to the circuit board. Many of the connectors use locking connectors to ensure reliable connectivity.

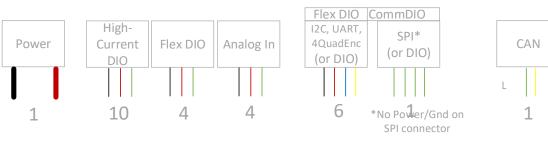
## VMX-pi External IO Connector Summary (NOTE: All connectors exit at right-angle from board)





JST VH locking connector (2-wire, 16-22 AWG [max 10 Amp], 3.5mm pitch)

3-pin PWM Header (.1" pitch)






JST GH locking connector (4-wire, 26-30 AWG [max 1 Amp], 1.25mm pitch)



Н



Note: Power cables and JSG GH cables and associated breakout boards are available at the Kauai Labs online store (www.kauailabs.com/store).

## FlexDIO Connectors (VMX Channels 0-7)

FlexDIO Connectors are a set of four locking JST GH connectors (4 pins each) with power, ground, signal A and signal B on each connector. These connectors are designed to support Quadrature Encoders, but may also be configured for use as Digital Inputs, Interrupts, Digital Outputs, PWM Generation or PWM Capture.



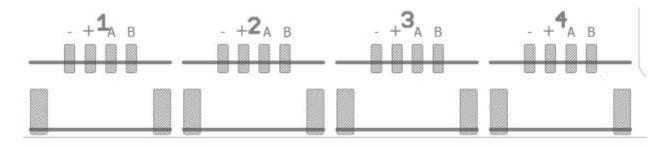



Figure 7 FlexDIO GH Connector (VMX Channels 0-7) pinout

## FlexDIO Header (VMX Channels 8-11)

The FlexDIO Header provides 4 sets of power, ground, and a single signal channel. The signals may be configured to support Quadrature Encoders, Digital Inputs, Interrupts, Digital Outputs, PWM Generation or PWM Capture.

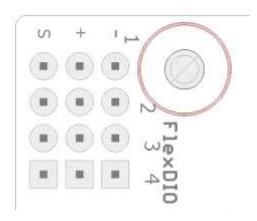



Figure 8 FlexDIO Header (VMX Channels 8-11) pinout

## High-Current DIO Header (VMX Channels 12-21)

The High-Current DIO Header provides 10 sets of power, ground, and a single signal channel. The signals may be configured to support Digital Inputs, Interrupts, Digital Outputs, or PWM Generation.



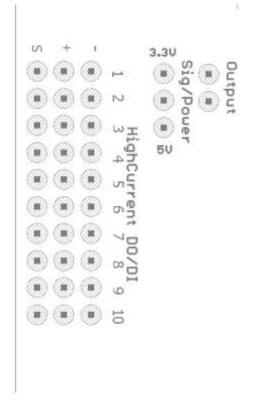



Figure 9 HighCurrentDIO Header (VMX Channels 12-21) pinout

## Analog Input Header (VMX Channels 22-25)

The Analog Input Header provides 4 sets of power, ground, and a single signal channel. The signals may be configured to support Analog Accumulation or Analog Interrupts.

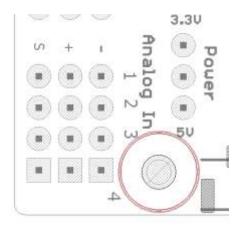



Figure 10 Analog Input Header (VMX Channels 22-25) pinout



## CommDIO Connectors (VMX Channels 26-33)

The 3 CommDIO Connectrors are three locking JST GH connectors (4 pins each) with different sets of power/ground/signals. Each connector may be configured to communication using the corresponding digital communication protocol. Alternatively, the Input Channels may be configured for use as Digital Inputs or Interrupts; Output Channels may be configured for use as Digital Outputs or PWM.

|      | Pin 1                        | Pin 2                         | Pin 3                        | Pin 4                        |
|------|------------------------------|-------------------------------|------------------------------|------------------------------|
| 12C  | Ground                       | Power (5 or 3.3V)             | SDA (Channel 26)<br>[OUTPUT] | SCL (Channel 27)<br>[OUTPUT] |
| UART | Ground                       | Power (5 or 3.3V)             | TX (Channel 28)<br>[OUTPUT]  | RX (Channel 29)<br>[INPUT]   |
| SPI  | SCK (Channel 30)<br>[OUTPUT] | MOSI (Channel<br>31) [OUTPUT] | MISO (Channel<br>32) [INPUT] | CS (Channel 33)<br>[OUTPUT]  |



Figure 11 CommDIO Connector (VMX Channels 26-33) pinout

## CAN Connector

The CAN Connector is a 2-pin Weidmuller Push-in Direct Insert Lock Connectors designed to connect to the CAN Low (L) and CAN High (H) signals.

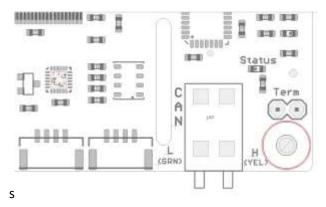



Figure 12 CAN Connector and CAN 10KOhm Termination Header

## CAN Termination Jumper

A CAN Termination Jumper is also provided; when a jumper is installed, a 10K-ohm resistor is enabled in order to provide CAN bus termination.



## Micro-USB Connector

A Micro-USB Connector is provided allowing for both remote configuration/management (including firmware upgrade) as well as access to a real-time data stream (up to 200Hz) from the onboard navX-technology IMU.

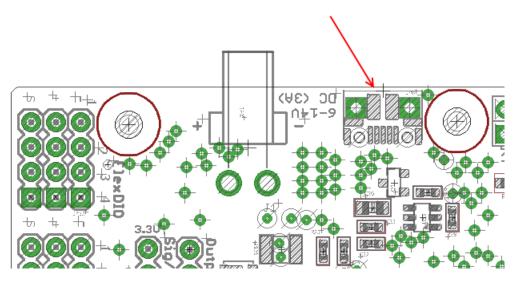



Figure 13 Micro-USB Connector

## Input Power Connector

A JST VH Locking Connector provides power to the circuit board, as well as the connected Raspberry Pi and any external devices. The connector is rated for 10A, which well exceeds the VMX-pi current limit of 3A.

## Battery & Real-time Clock

VMX-pi includes a pre-installed CR2032 3V Battery and associated Real-time Clock, enabling VMX-pi to manage a date/time clock (with 500 microsecond resolution) which can be used to timestamp logs, provide a network clock source in systems where an accurate time source is not present, and to synchronize sensor data from multiple sources.

The Battery is installed on the under-side of the circuit board, as shown in Figure 14.



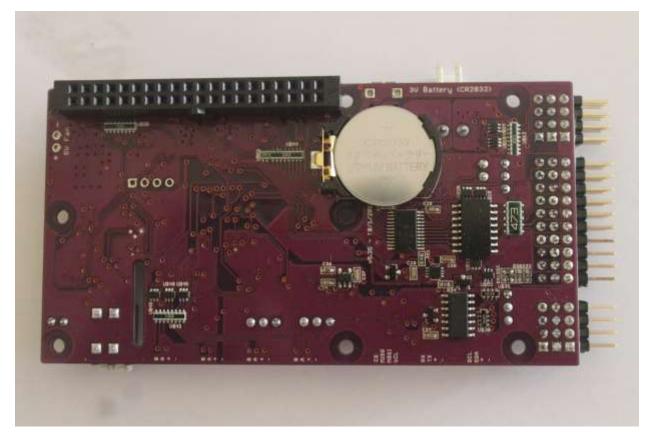



Figure 14 VMX-pi circuit board bottom-side

## 40-pin Raspberry Pi Connector

A 40-pin connector is mounted to the VMX-pi circuit board bottom-side, and is designed to connect to the GPIO connector on the Raspberry Pi 3 or the Raspberry Pi Zero W.

## Optional 5V Fan Connector

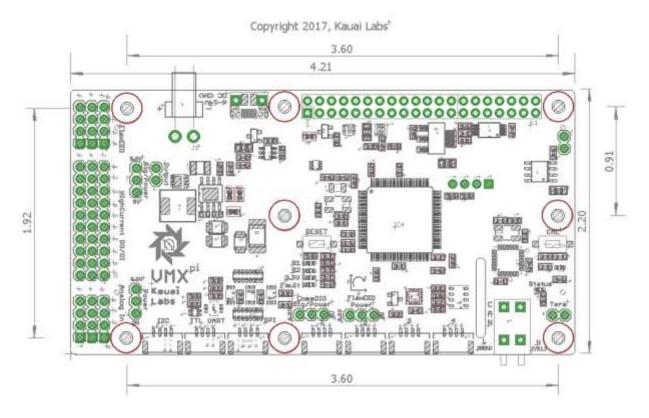
5VDC and Ground terminals are included on the VMX-pi circuit board bottom side, and may be used to power an external fan for cooling system components. The 5VDC on this connector is generated by the onboard 5V regulator for external devices.

| LED    | Color  | Description                        | Normal State                    |
|--------|--------|------------------------------------|---------------------------------|
| S1     | Green  | MPU-9250 Interrupt Status          | On                              |
| S2     | Green  | MPU-9250 Communication Status      | On                              |
| 3.3V   | Green  | Internal Circuitry 3.3V Power Good | On                              |
| Fault  | Red    | External Device Power Fault        | Off                             |
| CAN    | Green  | CAN Bus Communication Good         | On (when actively communicating |
| Status |        |                                    | with CAN bus)                   |
| CAL    | Orange | Calibration in progress            | Off (blinks during calibration) |
| Status |        |                                    |                                 |

#### LEDs






## Buttons

| Name  | Description                                                                  |
|-------|------------------------------------------------------------------------------|
| Reset | When pressed, the VMX-pi microcontroller is reset                            |
| CAL   | When held during power-on, places the board into Firmware Update Mode        |
|       | When held down for 5 seconds during operation, schedules Factory & Omnimount |
|       | Calibration to occur when VMX-pi is next restarted/powered-on                |



## Physical Dimensions

## Circuit Board Dimensions



