navX-MXP Robotics Navigation Sensor User Guide

Kauai Labs

Copyright — 2019

Overview

navxX-MXP

Features

Technical Specifications
"Behind the Design"
Frequently-asked Questions

Installation

Installation

RoboRIO Installation

FTC Installation

Orientation

OmniMount

I/O Expansion

Alternative Installation Options
Creating an Enclosure

Software

Software

RoboRIO Libraries
Android Library (FTC)
Linux Library

Arduino Library
navxul

Tools

Examples

Examples

Field-Oriented Drive (FRC)
Rotate to Angle (FRC)
Automatic Balancing (FRC)
Collision Detection (FRC)
Motion Detection (FRC)
Data Monitor (FRC)

MXP 1/O Expansion (FRC)

Guidance

Best Practices

Terminology

Selecting an Interface
Gyro/Accelerometer Calibration
Magnetometer Calibration Tool
Yaw Drift

Support

Support

Firmware Archive
Factory Test Procedure
Software Archive

Advanced

Table of Contents

Serial Protocol

Register Protocol

Open-source Hardware/Software
Firmware Customization

navXUIl Customization

Technical References

78
83
87
87
92
93

Overview
navX-MXP

Overview
navX-MXP

MXP

navX

navX-MXP is a 9-axis inertial/magnetic sensor and motion processor. Designed for plug-n-
play installation onto a National Instruments RoboRIO™, navX-MXP also provides RoboRIO 1/0
Expansion.

navX-MXP is a must-have add on to any RoboRIO-based control system, and includes free
software libraries, example code and many more features.

navx-MXP works with the Kauai Labs Sensor Fusion Framework (SF2) to provide even more
advanced capabilities.

Super-charge your robot:

USE interface MEP Breakout: Digital 11O, Analog in, Analiog Oul, Voltage Sefect

1G4
ErABEERERE SRR

MXP
Eonnectar
{urdlermeath|

. TTLUART.
5P Enable

[=]
¥
"
"
=
=
2

-

¥

L4

+-II'.|

o L7 mav‘)("" T

MEF Breakout: TTL UART, 5P & 12C Interfaces

Field-Oriented Drive
Auto-balance
Auto-rotate to angle
Motion Detection
Collision Detection
e and more...

https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/
https://pdocs.kauailabs.com/navx-mxp/examples/
https://pdocs.kauailabs.com/navx-mxp/intro/features/
https://pdocs.kauailabs.com/sf2/
https://pdocs.kauailabs.com/navx-mxp/examples/field-oriented-drive/
https://pdocs.kauailabs.com/navx-mxp/examples/automatic-balancing/
https://pdocs.kauailabs.com/navx-mxp/examples/rotate-to-angle-2/
https://pdocs.kauailabs.com/navx-mxp/examples/rotate-to-angle/
https://pdocs.kauailabs.com/navx-mxp/examples/collision-detection/

Overview
navX-MXP

Expand your RoboRIO™:

e 10 Digital I/Os

4 Analog Inputs

2 Analog Outputs

12C, SPI & UART Interfaces
Selectable Output Voltage

Features

Sophisticated Motion Processing

High Accuracy, Low-latency Yaw, Pitch and Roll Angles
Automatic Accelerometer/Gyroscope Calibration
Gravity-corrected Linear Acceleration

High-sensitivity Motion Detection

Tilt-compensated Compass Heading

9-Axis absolute heading w/Magnetic disturbance detection
Configurable Update Rate from 4 to 200Hz

Easy to Use

Plug-n-Play Installation via RoboRIO MXP Interface
USB, TTL UART, I12C and SPI communication interfaces
RoboRIO libraries and sample code

Tools for Magnetometer Calibration

Conformal-coated circuit board

Protective Enclosure
e A custom navX-MXP enclosure can be created with a 3D printer using provided

Enclosure design files
 Alternatively, the navX-MXP enclosure can be purchased online.

Open-Source

board schematics and bill of materials.

The Eclipse IDE and a free version of an ARM compiler can be downloaded for those
wishing to customize the firmware.

e Firmware updates can be easily downloaded to the navX-MXP circuit board via the USB
port.

https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/
https://www.shapeways.com/shops/kauailabs
https://github.com/kauailabs/navxmxp/tree/master/schematics
https://pdocs.kauailabs.com/navx-mxp/advanced/firmware-customization/

Overview
Technical Specifications

Technical Specifications
The navX-MXP circuit board and official firmware provide inertial and magnetic measurements,
with a range, accuracy and update rate as described on this page.
Note that certain performance specifications are only valid after a start-up
Gyroscope/Accelerometer Calibration period, during which time the navX-MXP circuit board

must be held still.

Additional details can be found in the navX-MXP datasheet.

Electrical Specifications

Voltage: 5v DC

Current Consumption: 50 millamps

Communications Interface: USB, TTL UART, SPI, 12C

Power Connector: USB and/or 5VDC/GND Pins on MXP
Connector

USB Connector: USB Mini-B

"Behind the Design"

navX-MXP is mentioned several times (pages 214-217, 227 and 231) within “FIRST Robots — Behind the Design —
30 Profiles of Design, Manufacturing and Control” (2015, USFIRST).

Team 624’'s 2015 Robot

https://pdocs.kauailabs.com/navx-mxp/guidance/gyroaccelcalibration/
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/05/navX_MXP_Datasheet.pdf
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/FIRST-2015-Book-Overview.pdf
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/FIRST-2015-Book-Overview.pdf

Overview
"Behind the Design"

2 A combinalion of sensors and mechaniams
mache i possibBiie (o ook ip foles i any
ananiahan

B The nawk MxP Robaotics Nevigation Sensor
provided' a method to increase the numbear
af 2EnNsors used o e frobal, Thie Do
seamigssly integrated with the W roboRi0
robot confroilsr.

214 | ARST Rebets: Behind the Design | Vince Wilczynski and Stephansg Sleryck

navX-MXP on Team 624’s 2015 Robot

Team 2062’'s 2015 Robot

https://i0.wp.com/pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/BehindTheDesign2015_Team624.jpg?ssl=1

Overview
"Behind the Design"

@ Rotary encoders reliably measunad the rodahion
of sach drve wheal. These were essanfial
measuramants neaded o control the mecanum
e SYSiaT,

@ The nawX MXP Robotics Nawigation
Sansor proviohed Pves-axs Soomirormelan
measuraman(s and was & conali for oiher @ Sensors, electrical panels, and controd systen componants wene inciuded in the CAD drawings. This ievel
sansor data af gafal ensurad faf the slectnical and contral svsfems wae infearatod do the desion orocess

navX-MXP on Team 2062's 2015 Robot

About the “Behind the Design” Book

“Behind the Design — 30 Profiles of Design, Manufacturing and Control” has six chapters that focus on CAD
modeling, traditional machining, CNC mills and lathes, CNC cutting, 3D printing, and sensors/control. Each chapter
profiles five FRC teams to illustrate how these technologies apply to robot design, manufacturing, and control. The
book also includes vignettes between the chapters that illustrate the purpose of FIRST and its impact.

Frequently-asked Questions

Will navX-MXP work with the National Instruments RoboRIO™?

Yes, the navX-MXP is designed specifically to work with the RoboRIO. Please see the

instructions for installing navX-MXP onto a FIRST FRC robot for more details, as there
are several installation options.

https://i0.wp.com/pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/BehindTheDesign2015_Team2062.jpg?ssl=1
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/FIRST-2015-Book-Overview.pdf
https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/

Overview
Frequently-asked Questions

Will navX-MXP work with the Android-based FTC Control System?

Yes, navX-MXP can be used with the Android-based FTC Control System, via its 12C
interface. For more information, please see the FTC Robot Installation instructions and
the description of the Android Libraries.

Will navX-MXP work with the older National Instruments CRIO™ robot controller?

Yes, navX-MXP can be used with the National Instruments CRIO robot controller by
using the navé6 libraries, which are available on the . You will need a USB-t0-RS232
serial converter in order to connect navX-MXP to the CRIO’s RS-232 port, and you will
also need a 12VDC-to-5VDConverter to provid power/ground to the power pins on the
navX-MXP’s MXP Connector.

Please note that the legacy navé6 libraries only use the navX-MXP serial interfaces, and
do not provide access to new navX-MXP features including 9-axis headings,
magnetometer calibration and magnetometer disturbance detection.

What interface/installation options are available for the navX-MXP?

¢ Plug-n-play install to the RoboRIO MXP port

¢ Connection to the RoboRIO MXP port via a male-to-female floppy-disk-style
ribbon cable

¢ Connection to one of the RoboRIO USB Connectors via a USB Cable

e Connection of power (+5VDC)/ground to the navX-MXP’s MXP Connector,
and direct connection to the TTL UART, 12C or SPI pins.

Aren’t the magnetometer (compass heading) readings unreliable when the navX-MXP is
used on a Robot with powerful motors?

Yes, this is correct. If navX-MXP is mounted nearby any energized motors, the
magnetometer’s ability to measure the (weak) earth’s magnetic field is severely
diminished.

However, at the beginning of each FIRST FRC match, the robot is turned on for about a
minute before the match begins. During this time period, the motors are not energized
and thus do not add magnetic interference that would disturb the magnetometer

https://pdocs.kauailabs.com/navx-mxp/software/android-library-ftc/
https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/
https://pdocs.kauailabs.com/navx-mxp/installation/orientation#One-wire_Connect_via_"Floppy-disk"_extension_cable
https://pdocs.kauailabs.com/navx-mxp/installation/orientation#One-wire_Connect_via_"Floppy-disk"_extension_cable
https://pdocs.kauailabs.com/navx-mxp/installation/orientation#One-wire_Connect_via_USB_cable
https://pdocs.kauailabs.com/navx-mxp/installation/orientation#Low-level_Connect_via_Power_and_Signal_pins_on_MXP_Connector

Overview
Frequently-asked Questions

readings. Once the magnetometer is calibrated, navX-MXP will return either an accurate
magnetometer reading, or an indication that its measurement of the earth’s magnetic
field has been disturbed.

Magnetometer readings taken at the beginning of a match, when combined with the
navX-MXP yaw measurements, enable a robot’s pose and absolute heading to be
maintained throughout the match. This feature of the navX-MXP is referred to as a
“9-axis” heading.

Why do the Yaw angles provided by the navX-MXP drift over time?

The short answer is that the yaw angle is calculated by integrating reading from a
gyroscope which measures changes in rotation, rather than absolute angles. Over time,
small errors in the rotation measurements build up over time. The navX-MXP features
sophisticated digital motion processing and calibration algorithms that limit this error in
the yaw angle of ~1 degree per minute. For further details, please see the Yaw Drift

page.

Can the navX-MXP “Displacement” estimates be used for tracking a FRC or FTC robot’s
change in position (dead-reckoning) during autonomous?

Accelerometer data from the navX-MXP’s onboard MPU-9250 are double-integrated by
the navX-MXP firmware to estimate displacement, and are accurate to approximately 1
meter of error during a 15 second period.

To track a FRC or FTC robot’s position during autonomous requires an accuracy of
about 1 cm of error per 15 seconds. While the accuracy of the navX-MXP displacement
estimates might be good enough to track the position of an automobile on a road, it is
too low for use in tracking a FRC or FTC robot’s position during the 15 second
autonomous period.

The root cause of the displacement estimate error rate is accelerometer noise.
Estimating displacement requires first that each acceleration sample be multiple by itself
twice (cubed), and then integrated over time. Practically, if a noisy signal is cubed, the
result is very noisy, and when this very noisy value is integrated over time, the total
amount of error grows very quickly.

The current noise levels (approximately 150 micro-g per square-root-hertz) would need
to be reduced by a factor of 100 (two orders of magnitude) before displacement
estimates with 1 cm of error per 15 seconds can be achieved by double-integration of

https://pdocs.kauailabs.com/navx-mxp/guidance/yaw-drift/

Overview
Frequently-asked Questions

accelerometers.

MEMS accelerometers which feature these low noise levels are beginning to emerge,
but are currently very expensive. KauaiLabs is actively researching these technology
developments and projects that MEMS technology that is both (a) low noise (1 micro-g
per square root hertz) and (b) available at low cost will be available in approximately 5
years (~2020). KauailLabs plans to develop a product which can be used for
accelerometer-based dead-reckoning at that time.

Did Invensense finally publicly release a description of the DMP (Digital Motion
Processor) and interface specs, or are you using what other people reverse engineered a
while ago?

The navX-MXP firmware uses the officially released Invensense MotionDriver version
6.1. Kauai Labs has ported this driver to work correctly on the navX-MXP’'s STM32F411
micro-controller.

What's the difference between navX-MXP and the navX-MXP Aero?

navX-MXP and the navX-MXP Aero share a single design. navX-MXP Aero adds a
pressure sensor (MS5611) providing additional altitude measurements with a resolution
of 10 cm.

Since the pressure sensor is an expensive component, this sensor was left off of navX-
MXP, decreasing the cost for those not desiring an altitude measurement.

Installation
Installation

Installation
Installation

Plug-n-play: navX-MXP is designed for rapid, plug-n-play installation on a
National Instruments RoboRIO™, making it easy to install and integrate onto robots including
a FIRST FRC Robot. navX-MXP and supports plug-n-play installation onto an Android-based
FTC Raobot.

Orientation: Tips and tricks for ensuring navX-MXP measurements are aligned with your robot,
including the new Omnimount flexible mounting feature.

I/O Expansion: In addition to sophisticated motion processing, navX-MXP also provides analog
and digital 1/0O expansion on a RoboRIO.

Flexibility: To allow flexible customization, navX-MXP also supports several alternative
installation options as well as several communication options, providing flexibility
when integrating with other components.

Enclosure: To protect an installed navX-MXP, an enclosure is available — which can be either
purchased, or printed on a 3D printer using open-source design files.

RoboRIO Installation

navX-MXP is designed for plug-n-play installation onto the National Instruments RoboRIO™,
This installation takes about only a minute. To install, simply place the 34-pin “MXP” Connector
on the bottom of the navX-MXP circuit board into the corresponding MXP slot on the top of the
RoboRIO, as shown below.

https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/
https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/
http://pdocs.kauailabs.com/navx-mxp/installation/ftc-installation/
http://pdocs.kauailabs.com/navx-mxp/installation/ftc-installation/
https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/examples/mxp-io-expansion/
https://pdocs.kauailabs.com/navx-mxp/examples/mxp-io-expansion/
https://pdocs.kauailabs.com/navx-mxp/installation/orientation/
https://pdocs.kauailabs.com/navx-mxp/installation/orientation/
https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/

Installation
RoboRIO Installation

o

L
—

-

= I.._i._d"_._l_l i R S T S

Ll..i...wll.‘...l!\.a - e e

L Nt 90TvNY - T T

EEE.R:_R
TYNOLLYN

+
—
=
.
o
G
<
+
g
=
o
Ul

10

Installation
RoboRIO Installation

Securing nhavX-MXP to the RoboRIO

Next, secure navX-MXP to the RoboRIO using two #4-40 screws, each with a length of 3/16th
inch. You can also use a 1/4 inch-long screw if you place a small washer between it and the top
of the navX-MXP circuit board.

Image not found

Securing the navX-MXP circuit board and RoboRIO to the robot chassis

The navX-MXP circuit board should be mounted such that it is firmly attached to the robot
chassis. The quality of this mounting will be directly reflected in the quality of navX-MXP
inertial measurements. To ensure quality, carefully follow these guidelines:

¢ The RoboRIO on which the navX-MXP circuit board is placed should be tightly mounted;
it should be a part of the chassis mass, and should move exactly as the chassis moves.
Avoid mounting the navX-MXP circuit board in an area of the chassis that might be
flexible, as this could introduce vibration to the inertial sensors that does not represent
the chassis inertial properties.

¢ The navX-MXP circuit board should be mounted in the center of the chassis, which
ensures the origin of the yaw/pitch/roll axes truly represent the chassis center.

e Be sure to understand the orientation of the navX-MXP circuit board, relative to the
chassis, and decide whether OmniMount is needed.

¢ Housing the navX-MXP circuit board in some form of protective enclosure is highly
recommended, to protect it from damage. This should both protect the circuit board from
damage, and provide strain relief for the cables that connect to the navX-MXP circuit
board.

(Note that there are several other installation options available.)

FTC Installation

Note: navX-MXP firmware version 2.2 or higher is required to use navX-MXP w/the FTC
Android-Based Robot Control System.

navX-MXP can be used with the FTC Android-Based Robot Control System released in 2015.
Both power to and signaling to/from navX-MXP occurs via the 12C interface by way of the Core
Device Interface Module (DIM) from Modern Robotics, Inc, as shown in the below diagram:

11

https://pdocs.kauailabs.com/navx-mxp/installation/orientation-2/
https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/
https://pdocs.kauailabs.com/navx-mxp/installation/orientation/
https://pdocs.kauailabs.com/navx-mxp/support/updating-firmware/
https://modernroboticsinc.com/core-device-interface-module-2
https://modernroboticsinc.com/core-device-interface-module-2

Installation
FTC Installation

Electrical Wiring Instructions

¢ Select one of the 6 12C ports on the DIM, as shown below. Note that the ports are
numbered from 0, starting at the bottom-most port on the left-hand side of the DIM.

e Connect the +5V, Data (SDA), Clock (SCL) and GND pins on the selected DIM 12C port
to the corresponding pins on the navX-MXP External 12C Port Connector.

i:4:

d

d

N
B

12

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/10/navx_mxp_dim_connection.jpg
https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/10/DIM_I2C_Port_Detail.png
https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/10/navx_mxp_external_i2c_port_closeup.jpg

Installation
FTC Installation

e To ensure the +5V from the DIM is used to power the navX-MXP board circuitry, ensure
that the “Voltage Select” jumper is set to 5V.

Electrical Wiring Verification

If properly wired, when power is applied to the DIM, the Red 3.3V LED on the navX-MXP should
light up.

Double-check that the SDA and the SCL wires on the DIM match the corresponding pins on the
navX-MXP circuit board.

Physical Installation on the Robot

The navX-MXP circuit board should be mounted such that it is firmly attached to the robot
chassis. The quality of this mounting will be directly reflected in the quality of navX-MXP
inertial measurements. To ensure quality, carefully follow these guidelines:

e Whereever the navX-MXP circuit board is placed, it should be tightly mounted; it should
be a part of the chassis mass, and should move exactly as the chassis moves. Avoid
mounting the navX-MXP circuit board in an area of the chassis that might be flexible, as
this could introduce vibration to the inertial sensors that does not represent the chassis
inertial properties.

e The navX-MXP circuit board should be mounted in the center of the chassis, which
ensures the origin of the yaw/pitch/roll axes truly represent the chassis center.

e Be sure to understand the orientation of the navX-MXP circuit board, relative to the
chassis, and decide whether OmniMount is needed.

e Housing the navX-MXP circuit board in some form of protective enclosure is highly
recommended, to protect it from damage. This should both protect the circuit board from
damage, and provide strain relief for the cables that connect to the navX-MXP circuit
board.

13

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/10/navx_mxp_voltage_select_closeup.jpg
https://pdocs.kauailabs.com/navx-mxp/installation/orientation-2/
https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/

Installation
Orientation

Orientation

navX-MXP measures a total of 9 sensor axes (3 gyroscope axes, 3 accelerometer axes and 3
magnetometer axes) and fuses them into a 3-D coordinate system. In order to effectively use
the values reported by navX-MXP, a few key concepts must be understood in order to correctly
install navX-MXP on a robot.

3-D Coordinate System

When controlling a robot in 3 dimensions a set of 3 axes are combined into a 3-D coordinate
system, as depicted below:

In the diagram above, the green rounded arrows represent Rotational motion, and the
remaining arrows represent Linear motion.

AXxis Orientation Linear motion Rotational Motion

X (Pitch) Left/Right — Left / + Right + Tilt Backwards

Y (Roll) Forward/Backward + Forward / — Backward + Roll Left

Z (Yaw) Up/Down + Up /— Down + Clockwise/ — Counter-
wise

More details are available on the Terminology page.

Reference Frames

Note that the 3-axis coordinate system describes relative motion and orientation; it doesn’t
specify the orientation with respect to any other reference. For instance, what does “left” mean
once a robot has rotated 180 degrees?

14

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/06/TriAxis.png
https://pdocs.kauailabs.com/navx-mxp/guidance/terminology/

Installation
Orientation

To address this, the concept of a reference frame was developed. There are three separate
three-axis “reference frames” that should be understood:

Coordinate Technical Term X Axis Y Axis

System

Field World Frame Side of Field Front (Head) of Field
Robot Body Frame Side of Robot Front (Head) of Robot
navX MXP Board Frame See diagram Below See diagram below

Joysticks and Reference Frames

Since a three-axis joystick is typically used to control a robot, the robot designer must
select upon which Reference Frame the driver joystick is based. This selection of
Reference Frame typically depends upon the drive mode used:

Drive mode Reference Frame Coordinate Orientation
Standard Body Frame Forward always points to
Drive the front (head) of the robot
Field- World Frame Forward always points to
oriented the front (head) of the field
Drive

navX-MXP Board Orientation (Board Frame)

Aligning Board Frame and Body Frame

In order for the navX-MXP sensor readings to be easily usable by a robot control application,
the navX-MXP Coordinate System (Board Frame) must be aligned with the Robot Coordinate

system (Body Frame).

Aligning the Yaw (Z) axis and Gravity

15

https://en.wikipedia.org/wiki/Frame_of_reference
https://pdocs.kauailabs.com/navx-mxp/examples/field-oriented-drive/
https://pdocs.kauailabs.com/navx-mxp/examples/field-oriented-drive/
https://pdocs.kauailabs.com/navx-mxp/examples/field-oriented-drive/

Installation
Orientation

The navX-MXP motion processor takes advantage of the fact that gravity can be measured with
its onboard accelerometers, fusing this information with the onboard gyroscopes to yield a very
accurate yaw reading with a low rate of drift. In order to accomplish this, the yaw (Z) axis must
be aligned with the “gravity axis” (the axis that points directly up and down with respect
to the earth).

When installing navX-MXP on a robot, the navX-MXP yaw (Z) axis and the gravity axis must be
aligned.

Default navX-MXP Board Orientation

The default navX-MXP circuit board orientation is with the navX-MXP logo on the Rear
Left, with the top of the circuit board pointing up (with respect to the earth).

Since Body Frame and Board Frame coordinates should be aligned, and because the Yaw axis
must be aligned with gravity, by default you must orient the navX-MXP with the top of the board
facing up, and with the Y axis (on the circuit board) pointing to the front of the robot.

If you need to mount the navX-MXP circuit board in a different orientation (vertically,
horizontally, or upside down), you can use the new OmniMount feature to transform the
orientation.

16

https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/

Installation
Orientation

o

—

-

= I.._i._d"_._l_l i R S T S

ll..i...wll.n.l!\.a Ty Sy Sy By,

L Nt 90TvNY - T T

EEE.R:_R
TYNOLLYN

+
p—
=
(=
o
G
>
+
g
©
o
Ul

17

Installation
Orientation

OmniMount

If the navX-MXP default yaw axis orientation isn’t sufficient for your needs, you can use
the OmniMount feature to re-configure the navX-MXP yaw axis, allowing high-accuracy yaw
axis readings when navX-MXP is mounted horizontally, vertically, or even upside down.

Important Note: The OmniMount feature requires navX-MXP firmware version 1.1 or
higher, so you may need to update your navX-MXP firmwatre.

In certain cases, the navX-MXP axes (Board Frame) may not be oriented exactly as that of the
Robot (Body Frame). For instance, if the navX-MXP circuit board is plugged directly into the
RoboRIO-MXP connector, and the top of the RoboRIO (the edge on which the USB connectors
are mounted) is pointing up with the top side of the RoboRio pointing towards the front of the
robot, the navX-MXP axes will not be oriented identically to the Robot. This configuration is
shown in the diagram below:

18

https://pdocs.kauailabs.com/navx-mxp/installation/orientation-2/
https://pdocs.kauailabs.com/navx-mxp/support/updating-firmware/

Installation
OmniMount

Robot Orientation

Transforming navX-MXP Board Frame to Body Frame with
OmniMount

The navX-MXP’s “OmniMount” feature can transform the navX-MXP X, Y and Z axis sensor
data (Board Frame) into Robot Orientation (Body Frame) by detecting which of its three axes is
perpendicular to the earth’s surface. [NOTE: this requires navX-MXP firmware revision

1.1.37 or later].

This is similar to how a modern smart phone will rotate the display based upon the phone’s
orientation. However unlike a smart phone, the OmniMount detection of orientation does not
happen all the time — since the orientation should not change while the robot is moving. Rather,
each time OmniMount configuration occurs, navX-MXP records this transformation in persistent
flash memory, and will continue to perform this transformation until the transform is
reconfigured.

19

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/06/RobotVersesNavXMXPOrientation.png

Installation
OmniMount

To configure OmniMount, follow these simple steps:

e |nstall the navX-MXP onto your robot. ENSURE that one of the navX-MXP axes (as
shown on the navX-MXP circuit board) is perpendicular to the earth’s surface. This axis
will become the yaw (Z) axis. Note that this axis can either be pointing away from the
earth’s surface, or towards the earth’s surface.

¢ Press the ‘CAL’ button on the navX-MXP Circuit board AND HOLD THE BUTTON
DOWN FOR AT LEAST 5 SECONDS.

¢ Release the ‘CAL’ button, and verify that the orange ‘CAL’ light flashes for 1 second
and then turns off.

e Press the ‘RESET’ button on the navX-MXP circuit board, causing it to restart.

e The navX-MXP circuit board will now begin OmniMount auto-calibration. During this auto-
calibration period, the orange ‘CAL’ LED will flash repeatedly. This process takes
approximately 15 seconds, and requires two things:

o 1. During auto-calibration, one of the navX-MXP axes MUST be perpendicular
to the earth’s surface.

o 2. During auto-calibration, navX-MXP must be held still.

o |f either of the above conditions is not true, the ‘CAL’ LED will be flashing
quickly, indicating an error. To resolve this error, you must ensure that conditions
1 and 2 are met, at which point the ‘CAL’ LED will begin flashing slowly,
indicating calibration is underway.

¢ Once navX-MXP auto-calibration is complete, the Board Frame to Body
Frame Transform will be stored persistently into navX-MXP flash memory and used until
auto-calibration is run once again.

I/O Expansion

navX-MXP breaks out all usable signal pins on the National Instruments RoboRIO™ / MyRIO
MXP Connector.

20

Installation
I/O Expansion

USB Interface MXP Breakout: Digital 1/0, Analog In, Analog Out, Voltage Select

e
&
- @
“w e
= o
= e B
= PPl Connector
E & o (underneath)
.“u
© 5
€%
e TTL UART,
e SPI Enable
€ %
o

MXF Breakout; TTL UART, 5Pl & 12C Interfaces

21

Installation
I/O Expansion

DC Voltage Selection

Using the provided jumper, select the DC Voltage which will be routed to each of the connector
blocks. Select from either 3.3V or 5V DC. This regulated voltage is supplied directly by the host
computer (e.g., the RoboRIO).

/O Summary

Each of the 1/0 pins on the MXP connector has a corresponding 3-pin connector (DC Voltage,
Ground and Signal). The orientation of the Ground, Power and Signal pins for each of the
Digital 1/0, Analog Input and Analog Output pins is as follows:

Ground Power
"9 876543210 /3210 10

Digital 1/0Os

Each of the 10 Digital I/O pins may be configured for use as either Digitallnputs or
DigitalOutputs, PWM (Outputs) or Counters (Inputs).

Additionally, multiple (either 2 or 3) Digitallnputs may be used to form an QuadratureEncoder
input.

Digitallnput/DigitalOutput Addressing

navX-MXP Port MXP Pin Number RoboRIO Channel Address
0 DIOO 10
1 DIO1 11
2 DIO2 12
3 DIO3 13
4 DIO8 18
5 DIO9 19
6 DIO10 20
7 DIO11 21

22

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/navx-mxp-digital-io-pin-closeup.png

Installation
I/O Expansion

8 DIO12 22
9 DIO13 23

PWM Output Addressing

navX-MXP Port MXP Pin Number RoboRIO Channel Address
0 PWMO 10
1 PWM1 11
2 PWM2 12
3 PWM3 13
4 PWM4 14
5 PWM5 15
6 PWM6 16
7 PWM7 17
8 PWMS8 18
9 PWM9 19

For further documentation, please see the on this topic.

NOTE: The MXP connector has 2 Digital I/O pins which are dedicated to the 12C interface. MXP
Digital 1/0 Pin DIO14 is used for 12C SCL and DIO15 is used for 12C SDA. Since the navX MXP
I2C interface is always active, these pins must not be used for any other purpose.

Analog Inputs

Each of the 4 Analog Input pins on the MXP connector has a corresponding 3-pin connector
(DC Voltage, Ground and Signal). On the RoboRIO, these signals are routed to the internal
Analog-to-Digital Converters (ADCS).

Analog Input Addressing

navX-MXP Port MXP-Pin Number RoboRIO Channel Address
O*** AlO 4
Lr** All 5
2 Al2 6
3 Al3 7

Analog Outputs
Each of the 2 Analog Output pins on the MXP connector has a corresponding 3-pin connector

(DC Voltage, Ground and Signal). On the RoboRIO, these signals are generated by the host
computer’s internal Digital-to-Analog Converters (DACS).

Analog Output Addressing

23

Installation
I/O Expansion

navX-MXP Port MXP Pin Number RoboRIO Channel Address
0 AOO 0

1 AO1 1

|12

The nav-MXP 12C connector can be used to connect the RoboRIO to an external 12C Device.
The RoboRIO functions as an 12C Master. The connector provides DC Voltage, Ground, Clock
(SCL) and Data (SDA).

Note that this 12C connector resides on the same 12C bus which may optionally be used to
communicate between the RoboRIO and the navX-MXP’s onboard processor. navX-MXP uses
I2C Address 50 (0x32), so be sure that any external 12C device does not use this address.

SPI

The navX MXP SPI connector can be used to connect the RoboRIO to an external SPI device.
The RoboRIO functions as an SPI Master. The connector provides DC Votage, Ground, Clock
(SCK), Slave Select (SS), Master-in/Slave-out (MISO) and Master-out/Slave-in (MOSI) signals.

Note that this SPI connector resides on the same SPI bus which may optionally be used to
communicate between the RoboRIO and the navX-MXP’s onboard processor. navX-MXP will
respond to the Slave Select signal if and only if the SPI Enable dip switch is set to the “ON”
position. Thus, the SPI Enable dip switch should be set to the “OFF” position if you wish to
communicate with an external device via the SPI connector.

TTL UART

The navX-MXP TTL UART connector can be used to connect the RoboRIO to an external TTL-
level UART device.

NOTE: The TTL UART connector cannot be used to connect to an external RS-232 signal,
since RS-232 voltages are much higher than TTL-level UART voltages. Connecting a higher-
voltage RS-232 device to the TTL UART connector may subject the RoboRIO to damaging
voltage levels on these pins.

Note that this TTL UART connector can be used to communicate between the RoboRIO and the
navX-MXP’s onboard processor (in fact, this is the default). navX-MXP will respond to the
UART TX signal from the RoboRIO if and only if the UART Enable dip switch is set to the “ON”
position. Thus, the UART Enable dip switch should be set to the “OFF” position if you wish to
communicate with an external device via the TTL UART connector.

Alternative Installation Options

24

Installation
Alternative Installation Options

In addition to Plug-n-Play installation on the National Instruments RoboRIO™, navX-MXP’s
flexible design accommodates several additional installation options.

One-wire Connect via “Floppy-disk” extension cable

If mounting the navX-MXP circuit board directly into the RoboRIO’s onboard MXP connector is
not possible, a “Floppy-disk” extension cable can be used to place the navX-MXP circuit board
up to a few feet away from the RoboRIO. This installation method supports the I/O expansion
capabilities, since all MXP connector signals are carried over the extension cable.

Note that higher-speed signals such as those found on the SPI and 12C bus, and noise-
sensitive analog signals like those on the Analog Input and Output pins may be negatively
impacted by longer distances and electro-magnetic interference, so high quality shielded cabling
and shorter distances may be called for.

These extension cables are available online at AndyMark:

Image not found

One-wire Connect via USB cable

By using a USB Mini-B type (Male) to USB A type (Male) connector, navX-MXP can receive
both power and also communicate with the RoboRIO.

This installation method allows the navX-MXP circuit board to be placed longer distances away
from the RoboRIO than via the “Floppy-disk” extension cable method. However, this installation
method does support the I/O expansion capabilities, since the MXP connector signals are not
routed over the USB cable.

Low-level Connect via Power and Signal pins on MXP

25

https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/
https://www.andymark.com/product-p/am-2997.htm
https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/usb_minib_cable.png

Installation
Alternative Installation Options

Connector

If any of the “one-wire” methods described above is not desirable, you may also interface to the
navX-MXP circuit board using the Power, Ground and I2C/SPI/TTL UART signals on the MXP
Connector.

GND

_ o B , . _ 12C
5 5 - SDA SCL

[
DGND
&L

LIART TX
UART X

DaD 13 / PWReS

® o B
= 5 =
£ S &
e ©
=] [~

E i
—_—
P
|
a3
"

M0

Wl

MOSI MISO CLK C5
5P

o3y
w0 RS
o7 s
WS f 5P CLE
D0 3 f PG
i1 FPWN

un

=

2

~

Al
All

- o~ ~ a8 o

5

To use the 12C interface without directly plugging the navX-MXP circuit board into the RoboRIO
MXP connector, first ensure that the navX-MXP circuit board has power (either via the USB
connector, or via the +5VDC pin on the MXP connector).

Next, make sure that the digital ground from the host computer (e.g., the RoboRIO) is
connected to one of the GND pins on the MXP connector.

Finally, connect the SDA and SCL pins on the host computer (e.g., the RoboRIO) to the
corresponding SDA and SCL pins on the navX-MXP circuit board.

Note that the 12C bus expects that the SDA and SCL pins be pulled up with a pull-up resistor on
each line. The RoboRIO internally pulls these lines high.

The 12C pins are 5V tolerant, so the host computer can use either 5V or 3.3V DC levels on
these pins.

SPI

To use the SPI interface without directly plugging the navX-MXP circuit board into the RoboRIO
MXP connector, first ensure that the navX-MXP circuit board has power (either via the USB
connector, or via the +5VDC pin on the MXP connector).

Next, make sure that the digital ground from the host computer (e.g., the RoboRIO) is
connected to one of the GND pins on the MXP connector.

26

Installation
Alternative Installation Options

Finally, connect the CS, CLK, MISO and MOSI pins on the host computer (e.g., the RoboRIO)
to the corresponding CS, CLK, MISO and MOSI pins on the navX-MXP circuit board.

The SPI pins are 5V tolerant, so the host computer can use either 5V or 3.3V DC levels on
these pins.

Creating an Enclosure

The navX-MXP circuit board contains sensitive circuitry, and should be handled carefully.

An enclosure is recommended to protect the navX-MXP circuit board from excessive handling,
“swarf”, electro-static discharge (ESD) and other elements that could potentially damage the
navX-MXP circuitry. The enclosure can also help prevent accidental shorts to ground which may
occur on the MXP Expansion I/O pins.

Build vs. Buy

Those who prefer to print the enclosure using their personal 3D printer, an enclosure design file
(in STL format) is available in the “enclosure” directory of the .

Those who prefer to purchase the enclosure can order it from (which takes approximately 2
weeks to deliver), or at the Kauai Labs store if you'’re in a hurry. The price including shipping
will be approximately $20, depending upon the type of material used.

Design Files

The enclosure design files include:

¢ navx-mxp.skp: Sketchup 3D Design File for the navX-MXP circuit board
e navx-mxp-roborio-lid_v4.skp: Sketchup 3D Design File for a lid-style enclosure for the

27

https://en.wikipedia.org/wiki/Swarf
https://www.kauailabs.com/store/index.php?route=product/product&path=62&product_id=58
http://www.kauailabs.com/store/index.php?route=product/product&path=62&product_id=58

Installation
Creating an Enclosure

navX-MXP circuit board. Note that the design file scale is 1000X actual size, so will need
to be scaled down by a factor of 1000 before printing.

¢ navx-mxp-roborio-lid_v4_scaleddown.stl: STL Format File for 3d printing the lid-style
enclosure for the navX-MXP circuit board. This file contents have been scaled to their

actual size.

Printing and Customizing the Enclosure

The Sketchup (.skp) files can be edited using . Then, the files can be exported to a STL format
using the Sketchup STL Import/Export extension. Finally, these exported STL format files can
be opened and 3d-printed using .

Securing the Enclosure

The Lid Enclosure can be secured to the RoboRIO by two #4-40 3/8? screws. This will secure
not only the Lid, but will also secure the navX-MXP circuit board.

28

Software
Software

Software
Software

navX-MXP includes software which makes navX-MXP easier to understand,
integrate and use with FIRST FRC and FTC robots than other navigation technologies and
products available today. This software includes the following components:

FRC RoboRIO Libraries for accessing navX-MXP from a National Instruments
RoboRIO™-based robot

An ETC Android Library for accessing navX-MXP from an Android-based FTC Robot
Control Application.

Libraries for accessing navX-MXP from Linux and Arduino.

The navXUI, which demonstrates navX-MXP capabilities

For advanced users, several calibration/configuration tools are also available.

Note: For developers on Linux and Mac OS platforms, the latest non-Windows RoboRIO
(FRC)/Android (FTC) libraries build is also available. Please note that this build does not contain
any of the navX-MXP tools, but does contain the RoboRIO and Android libraries.

RoboRIO Libraries

navX-MXP libraries for use with the RoboRIO Libraries from WPI are available in each of the
languages/development environments commonly used to development FIRST FRC robot
applications:

e Java
e C++
e | abVIEW navX-AE

These libraries provide access to navX-MXP via SPI, [2C and USB and UART — as well as USB
and 12C interfaces to navX-Micro, and USB Interfaces to VMX-pi.

[Update: 2/2/2019 — Version 3.1.366 is now available — which is compatible with the 2019
FRC Release (2019.1.1). For more details on installation, see the page corresponding to
your chosen development language. This build also contains a firmware update
recommended if you are using the navX-MXP USB interface.]

29

https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/
https://pdocs.kauailabs.com/navx-mxp/android-library-ftc
https://pdocs.kauailabs.com/navx-mxp/software/linux-library/
https://pdocs.kauailabs.com/navx-mxp/software/arduino-library/
https://pdocs.kauailabs.com/navx-mxp/software/navx-mxp-ui/
https://pdocs.kauailabs.com/navx-mxp/software/tools/advanced-configuration/
https://www.kauailabs.com/public_files/navx-mxp/navx-mxp-libs.zip
https://www.kauailabs.com/public_files/navx-mxp/navx-mxp-libs.zip
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/java/
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/c/
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/labview/
https://pdocs.kauailabs.com/navx-micro/
https://pdocs.kauailabs.com/vmx-pi/

Software
RoboRIO Libraries

Android Library (FTC)

CaN>=X0ID

NOTE: The 2016 Version of the navX-Micro Android Library for FTC is tested with the current
2017 version of the “ftc_app” library for use with the Modern Robotics Core Device Interface
Module.

The navx_ftc Android software library supports access to navX-Model devices via the 12C
communication interface. Several example programs are provided, demonstrating how to use a

navX-Model device in a FTC-based robot control application.

To use the library, you can download the of the libraries, or you can checkout the source
code with Git. To learn more about the library, online help is available.

Getting Started

Before getting started, ensure you have installed Android Studio and the latest ETC Robot
Controller Application (“ftc_app”) package.

Several sample Java Robot Applications are provided. After running the setup program included
in the latest build, the libraries and samples will be installed to the following location:

<HomeDirectory>\navx-micro\android

For example, if your user name is Robot, the directory name will be C:\Users\Robot\navx-
micro\android.

Within this directory, the “examples” sub-directory contains several example programs. Select
the example you wish to start with and copy it into your project as follows:

e Copy one or more of the example navX-Model “op modes” files from the
<HomeDirectory>\navx-micro\android\examples directory into your project’s

30

https://i0.wp.com/pdocs.kauailabs.com/navx-micro/wp-content/uploads/2015/10/android2.jpg
https://github.com/kauailabs/navxmxp/tree/master/android/navx_ftc
https://www.kauailabs.com/public_files/navx-micro/apidocs/android
https://developer.android.com/sdk/index.html
https://github.com/ftctechnh/ftc_app
https://github.com/ftctechnh/ftc_app
https://www.kauailabs.com/public_files/navx-micro/navx-micro.zip

Software
Android Library (FTC)

“TeamCode” top-level directory. (i.e., org.firstinspires.ftc.teamcode).

Next, several configuration changes must be made in order that the Android Studio ftc_app-
based project can locate the navx_ftc library:

¢ Modify the op mode example file to change the following line near the top of the file to
match the 12C port on the Core Device Interface Module to which you have connected
the navX-Model device:

private final int NAVX DIMI2C PORT = 0; /* See the installation
page for details on port nunbering. */

¢ Modify your robot application’s (the “TeamCode” project) build.release.gradle file
repository list to add a reference the directory where the navx_ftc library is installed:

repositories {
flatDir {
dirs "libs', "C\\Users\\Robot\\navx-
m cro\\androi d\\Ii bs'

}
}

¢ Again in the same build.release.gradle file, add the navx_ftc library to the list of libraries
the ftc_app will link to — by adding this line near the bottom of the gradle build file, in the
dependencies section:

dependenci es {

conpile (nane:' navx_ftc-rel ease', ext:'aar')

}

Linux Library

A library for accessing navX-MXP (and navX-Micro) from Linux is
available. This library was developed by Alexander Allen of FRC Team 900 (Zebracorns) and

31

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/12/linux-icon-28178.png

Software
Linux Library

supports the USB interface.

The navX-MXP Linux Library is useful for integrating with video processors such as the
Raspberry-Pl and the Jetson TK1 and TX1.

To use the library, you can the source code with Git. Online help is also available.

Getting Started

After checking out the source code with Git into a directory on your Linux OS, compile the library
using CMake.

The file Timestamp.cpp demonstrates how to integrate the library into your application; you will
need to identify the Linux serial port name to use, as follows:

AHRS ahrs = AHRS("/dev/ttyACVMD");

Sensor data values can be retrieved after the completion of the AHRS constructor.

Arduino Library

A library for accessing navX-MXP (and navX-Micro) from Arduino is
available. This library supports the I12c and SPI interfaces.

The navX-MXP Arduino Library is useful for integrating navX-MXP into Arduino-based project.

To use the library, you can the source code with Git.

Getting Started

After checking out the source code with Git into a directory on your computer, compile using the
Arduino IDE.

32

https://cmake.org/runningcmake/
https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/12/arduino-icon-17552.png

Software
Arduino Library

The file navXTestJig.ino demonstrates how to integrate the library into your application. The
setup() and loop() functions in this file demonstrate how to initialize and communicate with the
sensor.

navXul

The navXUI user interface application provides a simple way to visualize the data provided by
the navX-MXP.

@ 000U o —— | ™

Magnetic
Disturbance
o Indicator
Gyro Calibration
in process
indicator
Motion
Indicators
Yaw angle

(grey: uncalibrated)

Gravity-corrected Pitch/Raoll angles

Linear Acceleration

(G)

Compass angle
(grey: uncalibrated)

9-axis heading
(grey: unreferenced

sensor
Temperature (C)

Altitude (navX
MXP Aero only)

Gyro Calibration in Progress Indicator

The Gyro Calibration in Progress Indicator is displayed during initial gyroscope calibration,
which occurs immediately after power is applied to the navX-MXP. If the gyroscope calibration
does not complete, the navX-MXP yaw accuracy will be adversely impacted. For more
information on Gyro Calibration, please see the Gyro/Accelerometer Calibration page.

Motion Indicators

The navX-MXP provides dynamic motion indicators: (a) the “Moving” indicator and (b) the

33

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/navxmxpui_annotated.png
https://pdocs.kauailabs.com/navx-mxp/guidance/gyroaccelcalibration/

Software
navXUl

“Rotating” indicator.

The Moving indicator is present whenever the current Gravity-corrected Linear Acceleration
exceeds the “Motion Threshold”.

The Rotating indicator is present whenever the change in yaw value within the last second
exceeds the “Rotating Threshold”. Note that the navX-MXP Gyroscope Calibration only occurs
when the navX-MXP is not Rotating for a few seconds.

Gravity-corrected Linear Acceleration (G)

The navX-MXP automatically subtracts acceleration due to gravity from accelerometer data, and
displays the resulting linear acceleration. These measures are in units of instantaneous G, and
are in World Reference Frame.

Sensor Temperature

The Sensor Temperature indicates the die temperature of the MPU-9250 IC. Since shifts in gyro
temperature can impact yaw accuracy, navX-MXP will automatically perform Gyroscope
calibration whenever navX-MXP is still. See the Gyro/Accelerometer Calibration page for more
details.

Magnetic Disturbance Indicator

Once the navX-MXP Magnetometer has been calibrated (see the Magnetometer Calibration
page), whenever the current magnetic field diverges from the calibrated value for the earth’s
magnetic field, a magnetic disturbance is indicated.

Yaw Angle

The Yaw Angle is displayed in grey text if Gyro Calibration has not yet been completed. Once
Gyro Calibration is complete, the Yaw Angle text color will change to white.

Pitch/Roll Angles

The Pitch/Roll Angles are always displayed in white text, since Accelerometer calibration occurs
at the Kauai Labs factory.

Compass Angle

The Compass Angle displays the tilt-compensated compass heading calculated from the navX-
MXP’s Magnetometer combined with the tip/tilt measure from the Accelerometers.

The Compass Angle is displayed in grey text if Magnetometer Calibration has not yet been

34

https://pdocs.kauailabs.com/navx-mxp/guidance/gyroaccelcalibration/
https://pdocs.kauailabs.com/navx-mxp/software/tools/magnetometer-calibration/

Software
navXUl

completed. Once Magnetometer Calibration is complete, the Compass Angle text color will
change to white.

9-axis (“Fused”) Heading

The 9-axis heading is displayed in grey text if Magnetometer Calibration has not yet been
completed and/or if no undisturbed magnetic readings have occurred.

Altitude

The Altitude displays the navX-MXP’s calculated current altitude, based upon the reading from
the pressure sensor, the current temperature and the sea-level pressure.

The Altitude is displayed in red text if a Pressure Sensor is not installed. Pressure Sensors are
only installed on the navX-MXP Aero. Valid altitude readings are displayed in white text.

Installing/Running the navXUl

e To run the navXUI, the navX-MXP must be connected to a PC running Windows via
USB.

* Make sure Java 7 (version 1.7) or Java 8 (version 1.8) is installed on your computer.
The 64-bit version of Java is recommended. To tell which version of java is currently
“Active”, open up a command window, and type this command:

j ava -version

¢ Download the and unzip the contents to your local computer.

* Run the setup.exe program, which will install the navXUI, as well as all necessary device
drivers for communicating over USB with the navX-MXP, as well as some additional
tools.

¢ Start the navXUI:

From your Start Menu, select “Kauai Labs” and then “navX-MXP” and click on the “navXUl”
icon to start the navXUI.

If your computer has more than one serial port, you can select which serial port to use by
clicking on the up/down arrows in the COM port selection control in the UI.

Tools

35

Software
Tools

navX-MXP includes several tools for magnetometer calibration and advanced configuration.
These tools run on a Windows PC and communicate via USB to navX-MXP.

NOTE: These tools are provided for use by advanced users; please carefully read the tool
descriptions before using them.

36

https://pdocs.kauailabs.com/navx-mxp/software/tools/magnetometer-calibration/
https://pdocs.kauailabs.com/navx-mxp/software/tools/advanced-configuration/

6('?9 Examples
Examples

Examples
Examples

Example source code for various navX-MXP (and navX-Micro) capabilities are available for both
for FRC and FTC Robotics Control Systems.

FRC Examples

This section provides example code for several common navX-MXP (and navX-Micro)
applications used by FIRST FRC teams on their robots to add sophisticated navigation
capabilities. These examples are in Java, C++ and LabVIEW.

e Java/C++
o When you run the setup program contained in the latest build, Java/C++
examples will be installed to subdirectories underneath \navx-mxp\\examples
(e.g., C:\Users\Robot\navx-mxp\cpp\examples).
e LabVIEW
o When you run the setup program contained in the latest build, LabVIEW
examples are installed at:
= \vi.lib\Rock Robotics\WPN\ThirdParty\Sensors\navX
o The LabVIEW Install Directory is typically C:\Program Files (x86)\National
Instruments\LabVIEW 2016.

FTC Examples

If you are looking for FTC examples, please see the navX-Micro Examples.

Field-Oriented Drive (FRC)

37

https://www.kauailabs.com/public_files/navx-mxp/navx-mxp.zip
https://www.kauailabs.com/public_files/navx-mxp/navx-mxp.zip
https://pdocs.kauailabs.com/navx-micro/examples/

6('?9 Examples
Field-Oriented Drive (FRC)

Front
e LUf

.-""\E (rotation)
X

O O

An easy-to-use, highly-maneuverable drive system is at the heart
of a successful robot. Omnidirectional drive systems provide motion in the Y axis (forward-
backward), X-axis (strafe), and Z axis (rotating about it's center axis). Each “degree of
freedom” is independent, meaning that the overall robot motion is comprised of a “mix” of
motion in each of the X, Y and Z axes, control of which is easily provided with a 3-degree of
freedom joystick. This resulting maneuverability is quite useful during FRC competitions to avoid
other robots, pick up and place game pieces, line up for shooting to a target, etc.

Yet the driver who remains in a fixed position is now presented a new challenge: when the
driving joystick is pushed forward, the robot does not necessarily move forward with respect to
the field — rather it moves forward with respect to the robot. This forces the driver to develop the
skill of “placing their head in the robot” and performing the angular transformation mentally.
This skill can take quite awhile to develop meaning that rookie drivers face an uphill climb
before they can be productive team contributors. Additionally, the mental energy involved in
field-to-robot rotational transformations reduces the driver’s cognitive ability to focus other
game-related tactical tasks, as evidenced by drivers who are so intently focused on driving that
their response to their teammates is diminished. Moreover, when the driver does not have a
clear line of sight to the robot, the “head in the robot” becomes even more challenging.

Solving this challenge is conceptually straightforward. First, the current angle (?) of rotation
between the head of the field, and the head of the robot must be measured; secondly, the
joystick X/Y coordinates are transformed by ?, as shown in following pseudo-code:

doubl e rcw = pJoystick->Get Tw st ();
double forwd = pJoystick->GetY() * -1; /* Invert stick Y axis */
doubl e strafe = pJoystick->Cet X();

float pi = 3.1415926;
/* Adjust Joystick XY inputs by navX MXP yaw angle */

doubl e gyro_degrees = ahrs->Cet Yaw) ;

fl oat gyro_radians = gyro_degrees * pi/180;
float tenp = forwd * cos(gyro_radians) +
strafe * sin(gyro_radi ans);

strafe = -forwd * sin(gyro_radians) +

38

6('?9 Examples
Field-Oriented Drive (FRC)

strafe * cos(gyro_radi ans);
fwd = tenp;

/[* At this point, Joystick XY (strafe/forwd) vectors have been
*/
/* rotated by the gyro angle, and can be sent to drive system*/

The WPI Library “MecanumDrive_Cartesian()” function and the LabView “Holonomic Drive” VI,
which are used in the examples below, implement the field-centric drive algorithm. The navX-
MXP “Yaw” angle is provided to these library functions to specify the amount of rotation
between the robot and the field.

For more details on field-centric drive algorithms, please see this which provides a wealth of

helpful, well written information on implementing field-centric drive on various types of drive
systems.

FRC C++ Example

Full C++ source code on GitHub

FRC Java Example

Full Java Source code on GitHub

FRC LabView Example

The navX-MXP FieldCentric-Drive LabView example shows how to make small modifications to
the LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to
implement high-accuracy Field-Centric drive.

RobotMain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default sample
rate is 50Hz. You may need to process faster for your situation. For the SPI, 12C and USB
connections the max sample rate is 200Hz.

39

https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_FieldCentricDrive/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_Java_FieldCentricDrive/

Examples
Field-Oriented Drive (FRC)

E? Robot Main.vi Block Diagram on 2017 Robaot Project2. bvproj/ Target * - O 4
File Edit View Progect Operate Tools Window Help
*| Sesrch 4 b @
-

o s n g 85 vog .o |15pt Apphcation Font = | foe o b B

Documentation Scheduling leop
Robiot Main implements the framewsdk &
and peheduler (o your rebatsos program.
Enable Vision [TER { HEnable Vision
It shauld not be nacessang to modify this .
Vou should be able to code youwr robot Image Size [T— » @imege sze
hwithin the Team Vs described below.
"'|I.'H.nb-ut Mode=
“Taleop Enabled” =k

1. Beginuwi
Called ance st begnning, to open 110,

inatialize sensars and any globals, load

Jeettings from a file, etc. Finish

2. Autonomous Independent.yi
Automatically started with the first

I:lclﬂ of automomeaous and aberted on the
[

- |
ast pachket. Write this Team V] to locp for I 1

Exacute Teleop W1 to react
a neeswt Diriveer Station packet

e enfirety of the sutonomous pericd.

3, TebeDp v

Called wach tirme a tebeop D5 packet is
received and robiot is enabled.
|4, Dicsbledvi ased on the robot mode, call the appropriate Team code

ICH"EleId'It'H'HE a pachet is recerved and m puble click an icon to open a Tesm V1 and micdify code

fthe rokict is disabled. T
B inafialize robot

Pl E I Saaniup & Smatdashboad Tetwork Tables 5 ([A

Called Automatically starbed with the first e g e e e

packet and sborted on the last, —— Bunsmp with uier code. Add the nav Mains to your
adify this ¥l to carny out rebot and RabotMain and select &
sensor validation tests. Start Robot Comemunication. cormmgnication infer ace.
E Funs in parallel with user code. v Mainvi must not be placed in

B, Vision.vi ¢ Scheduling leop above.

A parallel loop that scquires and Acquire carmsenm images and =
PrOCESSEs CATIENS IMages. process them in parallel with =

1 other loops. Pl -

7. PeiodicTasks.vi |

Fasallel lcops runnang at user-defined Camy out paricdic tasks puch
eacac > 1 a5 control loops. h, r

2017 Robot Presect? vesoy Tanaet © »

Teleop.vi

The Teleop.vi is modified to feed the current navX-MXP “Yaw” angle reading to the Holonomic
Drive VI, which rotates the joystick X/Y coordinates by the gyro angle (and thus implements
FieldCentric drive control). Additionally, if a driver joystick button is pressed, the navX-MXP
“Yaw” angle is reset to zero. The navX-MXP Device TypeDef is passed to the Teleop.vi via a VI
input terminal.

40

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Field-Oriented Drive (FRC)

Teleopf ield CentraDreves Block Diagram on BMevE Progect hpeoy Terget

File Edt Veew Pigject Opiate Tools Wiadow Help .
o N g 2 uom ¢ UptapplicstionFont = | o e Ohe g0 o| Swarct L P

This ¥ & called esch time a TeleOp [paciet 5 ecereed. Use it to respond bo
new joytick or Driwer Station valyes

Comnmaon tasks mclude reading joystacks, wpdating motors, snd updating
wetpoints for pariadic loops. Thivecimpls e the nd WP Yo angle b
corirol Fiedd-Cantric Drive, and resets the yaw angle upon driver ingat.
Faist the Y angls when & Bulfon s previed by the :r-.'lr]

Yau can open K0 an the FIRST Call, of in the Bagin i, |m |
(e 0
e
Pelatch | v 7 -
,'J"’_f:"fj: _______ (5 [Tictp Taped Seconi] Faad Joyatick X andl ¥ Liz# the nareil MAP Yew angle to rotate Hhe joystick inputs
== and update miobor values
This can help determrine what hes
biwn run and for how kang ||-'.:.|,.| Mighgas) E—I'l[| Iﬁnhnll"ll-'f Mrﬂnrl
|] .
Primg g
i &
Call Conbed I.la;:h-:-' g Mecanum - Cataiian =
= Comot—{] B Publish the Robot Dreee rr'-'.l::--l
] val h
s bo ckfferantisbe betwesn ¥ e o alues o the dashboard
&k 0

Firil, Lawt, and Inbarmwdiats cally

s

-----------]
M

[

Esch time we enber, repoet that
ww A narning telsop

m M rebot imed 1o the dadbaand
EfE
These gre exwnples of reading i contrils from the Basic tab]
Sarmphi Bocbaan 0
5 Gl
Sarmiple Eoodan 1

(T
Al

Sarmple Shder D

TR T
bed,

v Progect heprog Target «

Full LabVIEW Source code on Github

Rotate to Angle (FRC)

Automatically rotating a robot to an angle using navX-MXP can be used to rotate a robot quickly
and accurately to a known angle, as long as the robot drive system provides independent Z-axis
rotation (the capability to “spin on a dime”). This same technique can be used to help a robot

drive in a straight line.

This example code below will automatically rotate the robot to one of four angles (0, 90, 180
and 270 degrees) whenever the corresponding “rotate to preset angle” button is pressed. This
rotation can occur not only when the robot is still, but also when the robot is driving. When using
field-oriented control, this will cause the robot to drive in a straight line, in whatever direction is

selected.

This example also includes a feature allowing the driver to “reset” the “yaw” angle. When the
reset occurs, the new gyro angle will be 0 degrees. This can be useful in cases when the gyro
drifts, which doesn't typically happen during a FRC match, but can occur during long practice

sessions.

41

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_TeleopFieldCentricDrive-1.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples

6('?9 Examples
Rotate to Angle (FRC)

The PID Controller coefficients defined in the example code will need to be tuned for your drive
system.

NOTE: The examples below are for Mecanum drive systems. If you are using a tank
(differential) drive system, this Java example is available.

For more details on this approach, please visit Chief Delphi, including this helpful post.

FRC C++ Example

Full C++ source code on GitHub

FRC Java Example

Full Java Source code on GitHub

FRC LabView Example

The navX-MXP Rotate to Angle LabView example shows how to make small modifications to
the LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to
rotate the robot to a given angle.

RobotMain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default sample
rate is 50Hz. You may need to process faster for your situation. For the SPI, 12C and USB
connections the max sample rate is 200Hz.

42

https://github.com/kauailabs/navxmxp/tree/master/roborio/java/navXMXP_Java_RotateToAngle_Tank/src/org/usfirst/frc/team2465/robot
https://www.chiefdelphi.com/forums/archive/index.php/t-95382.html
https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_RotateToAngle/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_Java_RotateToAngle/

Examples
Rotate to Angle (FRC)

E? Robot Main.vi Block Diagram on 2017 Robaot Project2. bvproj/ Target * - O 4
Fig Edit View Progect Operate Tools ‘Window Help
o Semrch L P @
-

o s n g 85 vog .o |15pt Apphcation Font = | foe o b B

Documentation Scheduling leop
Robiot Main implements the framewsdk &
ared scheduler Taf your rebotes pregiem,
Enable Vision [TER { HEnable Vision
It shauld not be nacessang to modify this .
VL Wiou shoukd be able to code your robot Image Size [T— » @imege sze

hwithin the Team Vs described below.

"'|I.'H.nb-ut Mode=

1. Beginuwi

Called ance st begnning, to open 110, Taleop Enabled” -
inatialize sensors and any globals, load
Jsettings from a file, etc, B Finish
. |
2. Autonamaous Independent.vi
Autornatically started with the first
parchoet nl'au'bur.'rum?m and aborted on the Execute Teleop W1 to react
last pu-c.hct.Wn'b:thﬂ Tﬂm"ﬂtl}h?‘lfl}r I a e Diriver Station packes m
e enfirety of the sutonomous pericd.
3, TebeDp v
Called wach tirme a tebeop D5 packet is
recerond and rebot is snabled.
4. Dicabledwi - Hased on the robot miode, call the appropriate Team code
;:alludud'ltim! 2 packet is recerved and m Double click an icon to open a Team W and micdify code
Jthe roirct s disabled. e et
& initialize robot
5, Tt il 7
Called Automatically starbed with the first E I Starup & Senant dashbosrd (Metwark Tables Server,
packet and aborted on the last, =8 [Runs in parallel with user code. Add the nav Mains to your
Wlodify this ¥l to carny out robot and RobetMairw and jelect &
sensor validation tests. Start Robot Comemunication. cormmgnication infer ace.
E Funs in parallel with user code. v Mainvi must not be placed in
B, Vision.vi ¢ Scheduling leop above.
A parallel loop that scquires and Aquine carmena images and =
PIOCEISES CAMIENS iMages. process tham in parallel with a
! other loops. Pl -
7, PesicdicTasks.i Il
Fasallel lcops runnang at user-defined Carry out paricdic tasks such
catar s 1 a5 cortrol loops. h r

2017 Robot Presect? vesoy Tanaet © »

Teleop.vi

The Teleop.vi is modified to feed the current navX-MXP “Yaw” angle reading to the Holonomic
Drive VI, which rotates the joystick X/Y coordinates by the gyro angle (and thus implements
FieldCentric drive control). Additionally, if a driver joystick button is pressed, the navX-MXP
“Yaw” angle is reset to zero. This example also includes a “Rotate to angle” feature, using a
PID controller; note that if “Rotate to Angle is used while in motion, it causes the robot to drive
in a straight line, correcting for lateral drift.

43

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Rotate to Angle (FRC)

B} TeleopRotsteToangle v Block Dagraen on Mawd Progect vpeoy Tange
¥ 9 . pTary

- o
File Edit View Project Opsiabé Tooh Windew Halg

Sa @MY B woE ot | 15papplicetion Fort v | Qo doe @D Bgd =l 5 4, ?.
Thas V1 s called mach Erme o ToleOp DS packet is recenvesl. Lha it 12 reipend 1o -

e posystich or Dever Staton values.

Comimeoe tasis inchude resding poystichs, updsting motors, and updsting
et points For periodic lops. This exsmple uie the nael MEP Yaw angle to

<ontred Field-Centric Derve, 35 well as provide 3 “rotste to angle” fesbre. | Riien b Vianw gl whien a Bl i previed by the drives. |
rofute-fo-angle” i used whils in motion, it causes the robet bo dries i & riraight [
line, comectng for any el drift. m
Wseat]
W'oad can opeen WO on the FIRST Call, or in tre Beginoi
"IIL.I"l nfo Fead Juysick % and ¥ .'Jsume m::x LAXP Waw angle to rotate
I;'“""-"—tl— .afld L#Mtll'c':?"\-"uﬁ :“".:fv.h npuns.

This can help determine shat bas
besn un and for how keng

:: oblish the Robot Drive Moior
@.ﬂ_ - =) velues o the deshboand
o

Coll Conbest IRchclI:lu.-tr-Lr:m:.'
[Fow boton}— =] 8
|LI5! 1o differenhiazbe bebween | .
First, Last. and Int diste calk == e
A *"I-'Iq—'—
i -t O
=f 0
) e
Each birrs ves anber, report L‘||Il 3
wepmmmngiEm [t} — -
N H
ol :

Puklinh the joyitsck deta the
ok sees B0 the dsshbosed

[These am meamples of readieg dethkcard controls frem bee Baic Tk

[erButeon o}

DE/Buttan |

ETE (Sample Booleam D

JETF) Sample Bookias 1

||:5-s.um: """ r ki Sample Sider 0
Fdywi Project beprmy Tamet €

Full LabVIEW Source code on Github

Automatic Balancing (FRC)

The Automatic Balancing example demonstrates how to implement a self-balancing robot,
which can be useful to help avoid a robot tipping over when driving. As an example, FRC team
263 demonstrated the auto-balance feature effectively during the 2018 FRC Championships.

The basic principle used in the example is based upon measurement of the navX-MXP Pitch
(rotation about the X axis) and Roll (rotation about the Y axis) angles. When these angles
exceed the “off balance” threshold and until these angles fall below the “on balance” threshold,

the drive system is automatically driven in the opposite direction at a magnitude proportional to
the Pitch or Roll angle.

Note that this is just a starting point for automatic balancing, and will likely require a reasonable
amount of tuning in order to work well with your robot. The selection of the magnitude of
correction to apply to the drive motors in response to pitch/roll angle changes could be replaced
by a PID controller in order to provide a tuning mechanism appropriate to the robot.

44

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_TeleopRotateToAngle-2.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples
https://youtu.be/aXhrxmCJZlE
https://youtu.be/aXhrxmCJZlE

6('?9 Examples
Automatic Balancing (FRC)

FRC C++ Example

Full C++ source code on GitHub

FRC Java Example

Full Java Source code on GitHub

FRC LabView Example

The navX-MXP AutoBalance LabView example shows how to make small modifications to the
LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to
implement high-accuracy Automatic Balancing.

RobotMain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default sample
rate is 50Hz. You may need to process faster for your situation. For the SPI, 12C and USB
connections the max sample rate is 200Hz.

45

https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_AutoBalance/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_Java_AutoBalance/

Examples

Automatic Balancing (FRC)

E? Robot Main.vi Block Diagram on 2017 Robaot Project2. bvproj/ Target *

Fig

> @

Edit View Progect Operate Tools Window Haelp
N § 95 woE .7 |15 AppbcationFont = | $oe o Gh- B

Diocumentation

Rabiot Main implements the framewoek
ane pehedulir (of your rebatses program.

It shauld not be nacessang to modify this
WL You shoukd be able to code youwr robot
hwithin the Team Vs described below.

1. Beginuwi

Called ance st begnning, to open 110,
inatialize sensors and ary glabals, load
Jeettings from a file, etc.

2. Autonomous Independent.yi
Autornatically started with the first
packet of autonomous and aborted on the

IL:I:t pachkoet. Write this Tearn V] to locp for

e enfirety of the sutonomous pericd.

3, TebeDp v
Called wach tirme a tebeop D5 packet is
receroed and robot is enabled.

4. Disabled v
Called each time a packest is recereed and
|the robet is disabled.

5. Testwi
Called Automatically starbed with the first
packet and sborted on the last,
Modify this ¥l te carry out rebot and
sensor validation tests.

B, Vision.vi
A parallel loop that scquires and
PrOCESSEs CATIENS IMages.

T, PeriodicTasks.vi
Fasallel lcops runnang at user-defined
cafar

e

i

2017 Robot Presect? vesoy Tanaet ©

Teleop.vi

Scheduling leop

Firish

Enabie Vision [TER - [@Enabi Viion|
Imiage: Squ—'. F@image sze

"'|I.'H.nb-ut Mode=

M Taleop Enabbed”

LF:-:H- Teleop V1 to react

a neeswt Diriveer Station packet

m

M8ased on the robot mode, call the approprate Team code
|Double click an icon to open a Tesm V1 and modify code

Create |0 refriumes
& initialize robot

Elml
L0

-
Starup & Senant dashbosrd (Metwark Tables Server,
Eng m parallel veith user code,

[B

Start Robot Comemunication.
Funs in parallel with user code.

ACGUINe Carmbna Images and
process them in parallel with

ather loops.

Carry cut peniodic tasks such
a5 cortrol loops.

fidd the navk Mains to your
Rabothain and select &
cermmanicabion inferace,

v Mairuvi must not be placed in

¢ Scheduling leop above.

5P~

The Teleop.vi is modified to feed the current navX-MXP “Yaw” angle reading to the Holonomic
Drive VI, which rotates the joystick X/Y coordinates by the gyro angle (and thus implements

FieldCentric drive control). Additionally, if a driver joystick button is pressed, the navX-MXP

“Yaw” angle is reset to zero. Finally, the navX-MXP “Pitch” (X-axis) and “Roll” (Y-axis) angles
are continuously compared to a “out of balance” threshold, at which point the corresponding

axis motor output value is derived from the inverse of the sin of that angle, until the time when
that same angle falls below the “in balance” threshold.

46

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Automatic Balancing (FRC)

B} Telerptipobalarsei Bloo [iagrem on bas 3 Beapet hprog Targed -
Fle Edr Viem Progec Dperme Took Wdis Help
- 3 I § I we T F | M dppkostion Fasl -:I...- T The g

This Wi 5 callbed each L 2 TeleDp 5 padiet s seceivedl, Uise i o ssspond 1o
rets pryPRGH £F Drivts SLRRGR =i

I prvrreys: ashs indlwile aidiag premicis apdatmg maieis. sed apsdating

s Vo poseebe keags. This £ 55 e WESP Yo Bt B0) nI:I-lTi:-lln whan # bution n prassed by Sha drear
ool Fhshil-C v D i sl 35 r0s i § SPIS0E 1 BAGRE” Taibiie. O m Cewd
st oA & st mhvle iy metio, i ot the oot o deive s patsghe | | [J—eel | |

ke, Canpiting fiow ap Ltwinl deh

Vi e ety 0 o The FIREST ol v iy The Betgireni
— R beyyitch X andl v
[E—

_"'l 1 e ppebate ity abe Lk That ruw/) WU Fitch [X-asit] and Fioll [W-asit) sngies

T8 el e T (i3 sulcarustically buslsrios th robat wherssos pither of
m - l.- |;_| | (e argied sucdeck B9 "ol of baleee” tiribodd sad
Hen T biem By s ritdl thst I raachet an i bslenes” thrschaid

e radl MEF Few argls bo soiste the oywdick npai |

Eal Comind Eﬂ 7 b e Aokt Doves Wioior]
o oabint b tha duhberd
—m -
Lt 10 (T iang Deemens ‘ +of q|n
e, Lash, g interediste caly _',. gf] T e—— e ——
EFezal
-]
Prevaticie (b Buttom ———— e
.
e nysrang beboog L=
kb the oy dats the
o ses ic thee dathbassd
E m‘.] — [WP -
0 i vOE, Set i g |-l +—H
! Ih:-:\- a if paght i abaes) BHiial
Tarepls Boalean E m m—.:.; 1
(ais| =]

Tarepde Boalkkan |

34 2y wird b '\m-lur!u::lll th Zaram

=~ mcicr iput vaban ureg tha meera of tha
Taenple Fede B , . n =i the "ot =f belence” angle. Eaplecing tha
W

fl’l.{ml'ﬁ'.llb-\-l r burereg for yoe

Full LabVIEW Source code on Github

Collision Detection (FRC)

Collision Detection is commonly used in automobiles to trigger airbag deployment, which can
reduce the force of an impact and save lives during an accident. A similar technique can be

used on a robot to detect when it has collided with another object.

The principle used within the Collision Detection example is the calculation of Jerk (which is

defined as the change in acceleration). As shown in the graph below (taken from navX-MX
data recorded in LabVIEW of a small collision), whenever the jerk (in units of G) exceeds a
threshold, a collision has occurred.

P

47

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_TeleopAutoBalance-1.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples
https://en.wikipedia.org/wiki/Jerk_(physics)

6?9 Examples
Collision Detection (FRC)

Collision Detection

using navx MXP Linear Acceleraion

0Em 2]

04

02

Acceleration (Y Axis|
— Jerk [Axis)

07 [c hml
0.4

0.6

In the sample code shown below, both the X axis and the Y axis jerk are calculated, and if either
exceeds a threshold, then a collision has occurred.

The “collision threshold” used in these samples will likely need to be tuned for your robot,

since the amount of jerk which constitutes a collision will be dependent upon the robot mass
and expected maximum velocity of either the robot, or any object which may strike the robot.

FRC C++ Example

Full C++ Source Code

FRC Java Example

Full Java Source Code

FRC LabView Example
The navX-MXP AutoBalance LabView example shows how to make small modifications to the
LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to

implement collision detection.

RobotMain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default sample

48

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/08/collision_detection_time_intensity.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/c%2B%2B/navXMXP_CPP_CollisionDetection
https://github.com/kauailabs/navxmxp/tree/master/roborio/java/navXMXP_Java_DataMonitor

Examples
Collision Detection (FRC)

rate is 50Hz. You may need to process faster for your situation. For the SPI, 12C and USB
connections the max sample rate is 200Hz.

B} Robot Msin.vi Block Disgram on 2017 Robaot Project?. lvpraj/ Target * - O x
Fig Edit View Progect Operate Tools Window Help
|| [—— L P
~

o i@ LM G IS wa @ | 15ptApphcation Font - | o o D B

Documentation Scheduling leop
Rabot Main implements the framewerk ~
el scheduler for your rebabics Fam,
" Fe Enable Vision [TER {+ @ Enable Vision
It shauld net be necessany te medify this
You should be able to code yowr robot Imuge_‘u’u
within the Team Vis described below.
vl Robot Mode
£ Teleop Enatbed” il

1. Beginav

Called ance st begmming, to open 11O,
inatialize sensars and any glabals, load
Jeettinigs from a file, ete,

Fimish

2. Autanaraous Independent.vi
Burtornatically started with thie first

I:lchl of automomaus and aborted on the
I

i
mst pachoet. Write this Team V1 to loop for I I

Execute Teleop VI to neact
a g Diriwer Station packet

e entirety of the autonomous period.

3. TebeOpai
Called each time a tebeop D5 packet is
recarotd and rebet is enabled.
|4, Disabledsi ased on the robot miode, call the appropriate Tesmn code
.Callndumﬁm: o packet is recerved and m pubile dick an icon to open a Tesm V1 and modify code
fihe robct is disabled. T N L
G initialize robot
5, st "' ™
Called Austomatically started with the first m Starup a St dashboard (Metwaork Tables Server,
packet and aborted on the last, 2 [Runs in parallel with user code, Add the navi Mainoa ko pour
Kodify this ¥l te carry out rebot and RobetMainw and select &
serisor validation tests. Srart Robot Comemunication. cormmunication inferlace.
E Funs in parallel with user code. v Mairvi must not be plaoed in
. Vision.vi & Scheduling leop above.
& parallel loop that scquires and Acguiine carins Images and me
PrOCESSEs CATIErS images. process them in parallel with =
! other loops. T
7. Pesiodic Tasks i E
Pamallel lcops running at user-defined [Carry cut penicdic tasks such
Eatar o 1 a5 cortrol loops. h A
=
W
2017 Robot Presect?. venob Taraet < »

Teleop.vi

The Teleop.vi is modified to feed the Linear Acceleration to a threshold detector to determine if
a collision has occured.

49

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Collision Detection (FRC)

B TelucpColsicaDatection s Block Disginm on Mind Projuct hprepTasget - o
Fie m Vitw Frojec Openabe Teok Windew Help .
o i Il g W, wWafg .t | 15ptApphcation Fort = | tor dev fhe g ¥| Se L P

|-:lmrl celinion ¥ “jark” (Hha changs in fwo ucossive tample) in Linear Scoslarsbon

receed “Colisan Thoesheld™ (in Os)

Coliscn lltul-ﬂl—
Cperemien taks inghudie resding pryshicks, updstisy motors, snd updating = F'I--_._,
sehpaints for penedic keops. This ssamphe iges the navid MEP 07 -ges Linsar el
Accebsation valoes, snd i & “jerk” thil eceeds the "cellsion threihald™ (in Gg) 0.5 — EJ
in detected, o Collmion Detection mgnel i werd bo the Smart Daghboard

fou can ogen WD an the FIRST Call, of in the Beginusi.] .l =]
[= T >
= £

Blalch lnfo
| i — _..l

This V1 is cabed esch tove 8 TeleDp D5 packet is recesved, Use & to repond bo
mew jorpstick or Driver Stabion values

|=-:::-

Thii cam halp determing what hag
bewn run and For how leng

[
Fraw Mobors =
[T
L all Combast — 3 Mecanum - Cadtmian =
- 58
pavei] | |- &
Lhe to differerfisie bebween \ =
Bead Joyshick ¥ and ¥ gt 0
{1y
Each time wee enter, report that oeyrstacii (bl Do
We a0E FUnEing telenp
L] Iﬁfﬂ okt sees 10 the dashbosrd

These are esampbes of reasing dashboard contrals Bom the Exsc s
Sarnghe Bockean

Sample Bockean 1

B =

Sarmiple Jider O

By]
i

e Prejuct beprey Target € »

Full LabVIEW Source code on Github

Motion Detection (FRC)

Detecting motion/no-motion can be simply detected by determining if a body’s linear
acceleration exceeds a small threshold.

Using the data directly from accelerometers, this is not as easy as it seems, since raw
accelerometer readings contain both acceleration due to gravity as well as acceleration due to a
body’s motion. One method for detecting motion with raw acceleration data is to use a high-
pass filter, which lets quickly-changing information through but blocks information that doesn’t
change frequently.

However, a more comprehensive and reliable approach is to subtract the acceleration due to
gravity from the raw acceleration values. The result value is known as “world linear
acceleration”, representing the actual amount of acceleration due to motion, and is calculated
automatically by navX MXP’s motion processor. Whenever the sum of the world linear
acceleration in both the X and Y axes exceeds a “motion threshold”, motion is occurring.

FRC C++ Example

50

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/08/LabviewNavX-AE_TeleopCollisionDetection.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples
https://en.wikipedia.org/wiki/High-pass_filter
https://en.wikipedia.org/wiki/High-pass_filter

Examples
Motion Detection (FRC)

Full C++ Source Code

FRC Java Example

Full Java Source Code

FRC LabView Example

The navX-MXP AutoBalance LabView example shows how to make small modifications to the
LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to detect
when your robot is moving.

RobotMain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default sample
rate is 50Hz. You may need to process faster for your situation. For the SPI, I2C and USB
connections the max sample rate is 200Hz.

B} Robot Msin.vi Block Disgram on 2017 Robaot Project?. lvpraj/ Target * - O x
Fig Edit View Progect Operate Tools Window Help
& {5 0§ 5 wog . | 15ptApphcation Font ~ | §ov W O B] Search i P !
A
Documentation Scheduling leop

Rabot Main implements the framewerk ~
aned scheduler for your robotscs pregram,

Enable Vision [TER - | » @Enable Vision
It shaould nct be neacessany to modify this ;
WL You shoukd be able to code your robot Imuge_‘u’uE—' ¢ @ imisge size

within the Team Vis described below.

1. Beginuvi "'|F.F.n:lb-ut Mode

Called ance st begmming, to open 11O, "o Talecp Enabled” -

inatialize sensars and any globals, load
Jeettings from a file, etc, [

2. Automomous Independent.vi
Autornatically started with the first
pachet of autonomous and aborted on the

I:I:t pachozt. Wiite this Tearn V] to locp for

& enftirety of the sutonomous pericd.

Execute Teleop V1 to react
a s Diriwer Station packet

3. TebeOpai
Called each time a tebeop D5 packet is
recarotd and rebet is enabled.

{8ased on the robot mode, call the appropriate Tesm code

4. Disabled vi i
Ea:l:d -:u::tim: o packet is recerved and m Double click an icon to open a Tesm V1 and modify code
Jthe robict is disabled. e '
5 initialize robot
5, Testd = " ™
Called Austomatically started with the first E ImI Startup 2 Senartdashbosnd (Netwaork Tables Server,
packet and sbormed on the last, £ [Runs in p with user code, Add the navi Mainoa ko pour
Kodify this ¥l te carry out rebot and Rabotllainwm snd elect &
sersor validation tests. T tart Robot Comemunication. cormimianication inferlace
torr | |Puns in parallel with user code. v Mairvi mist not ba plaoed in
. Vision.vi & Scheduling leop above.

& parallel loop that scquires and j Acguiine carins Images and

PrOCESSEs CATIErS images. process them in parallel with

E

other loops.

7. PeriodicTasks.i Elalld |
Fasallel lcops runnang at user-defined —-. Camy out paricdic tasks such
eacas . { a5 control loops. h r

= v

2017 Robot Prosect?. venouTanaet © ¥

51

https://github.com/kauailabs/navxmxp/tree/master/roborio/c%2B%2B/navXMXP_CPP_MotionDetection
https://github.com/kauailabs/navxmxp/tree/master/roborio/java/navXMXP_Java_MotionDetection
https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Motion Detection (FRC)

Teleop.vi

The Teleop.vi is modified to detect when the robot has motion.

B TeleophdotionDetection.vi Block Diagram on Mav) Project heproj/ Target - o x
File Edit View Project Operate Took Window Help I
ar Rk n g E vwag | 15pt Application Font = | Lo oo it Ogl ol T L P

L]

This ¥1 is called each time @ TebeOp 05 packet i received, Use & 1o nespond 1o
new joystick or Driver Sation values.

Common tasks include resding joysticks, updating motors, and updsting
wetpoints for panodsr lsops. This examiple uses the navd NP Motion detection
indicates, and outputs this value to the Smart Dashboard.

E the navi MAP has detected motion that evcesds 2's "Motion Threshold®, indicate ths
by outputting a valus to the Sman Dashboard.

__Hcrllnn Detected —
Match info - : E |
Read foystick X and == ot | Semson Status. MOVING | 27 =7

-I: | I and wpdate motor values
m RobotDme Motors f
II
S

"fou can open Y0 on the FIRST Call, or in the Begnai

This can help determine what has
been rum and for hiow long

Il Joystick [
Call Context IE o
— Publizh the Bobot Drive Motor
Ll o differentiate between Joystick O doees === walues to the dashboard

Furst, Last, and Interrmediate calls

Fulblish the joystick dats the|
robol sees 1o the dashboand

Each time we enter, report that
we are nunning teleop
E |'I'l1!:z are camples of resding dashboard controls from the Basic bul:l|

Sample Boolean O
LELE}

Sample Baolean 1
e
Sample Shder 0

FanL

Havi ProjecthproyTarget <

Full LabVIEW Source code on Github
Data Monitor (FRC)

The Data Monitor example code demonstrates how to perform navX-MXP initialization and
display all sensor values on a FIRST FRC robotics dashboard. The output data values include:

Yaw, Pitch and Roll angles

Compass Heading and 9-Axis Fused Heading (requires Magnetometer calibration)
Linear Acceleration Data

Motion Indicators

Estimated Velocity and Displacement

52

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_TeleopMotionDetection.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples

6('?9 Examples
Data Monitor (FRC)

e Quaternion Data
e Raw Gyro, Accelerometer and Magnetometer Data

As well, Board Information is also retrieved; this can be useful for debugging connectivity issues
after initial installation of the navX-MXP sensor.

FRC C++ Example

Full C++ source code on GitHub

FRC Java Example

Full Java Source code on GitHub

FRC LabVIEW Example

The navX-MXP Test_Window.vi example shows all of the outputs from the navX through “FRC
RoboRIO Robot Project”.

RobotMain.vi
Place the NavX main vi on the block diagram and set it up to your needs. The default sample

rate is 50Hz. You may need to process faster for your situation. For the SPI, 12C and USB
connections the max sample rate is 200Hz.

53

https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_DataMonitor/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_Java_DataMonitor/

Examples
Data Monitor (FRC)

E? Robot Main.vi Block Diagram on 2017 Robaot Project2. bvproj/ Target *

o @ G IS womt v | 150 Applcation Font w | o o @b BY

- O 4
File Edit View Progect Operate Tools Window Help
¢ Sesrch 4 ®
A

Documentation Scheduling leop
Robiot Main implements the framewsdk &
ared scheduler Taf your rebotes pregiem,
Enable Vision [TER -- - | » @Enabie Vision
It shauld not be nacessang to modify this
Vou should be able to code youwr robot |r|-|age-5|'u

hwithin the Team Vs described below.

1. Beginuwi
Called ance st begnning, to open 110, ™0 Taleop Enabhed -
inatialize sensors and ary glabals, load]
Jeettings from a file, etc.

Firish I

2. Autonomous Independent.yi
Automatically started with the first

I:lclﬂ of automomeaous and aberted on the
[

- |
ast pachket. Write this Team V] to locp for I 1

Exacute Teleop W1 to react
a neeswt Diriveer Station packet

e enfirety of the sutonomous pericd.

3, TebeDp v
Called wach tirme a tebeop D5 packet is
received and robiot is enabled.
|4, Dicsbledvi ased on the robot mode, call the appropriate Team code
ICH"EleId'It'H'HE a pachet is recerved and m puble click an icon to open a Tesm V1 and micdify code
Jthe robct is disabled. e e L
& initialize robot
5, Tt I ™
Called Automatically starbed with the first E I Starup & Senant dashbosrd (Metwark Tables Server,
It
packet and sborted on the last, 8 [Runs in p with wser code, Add the nav Mains to your
adify this ¥l to carny out rebot and RabotMain and select &
serisor validation tests. Srart Robot Communication. cormmunication interface.
E Funs in parallel with user code. v Mainvi must not be placed in
B, Vision.vi ¢ Scheduling leop above.
A parallel loop that scquires and Acquine carven images and me
PrOCESSEs CATIENS IMages. process them in parallel with =
! vy
T, PeriodicTasks.vi |
Fasallel lcops runnang at user-defined Carry cut peniodic tasks such
eacac > 1 a5 control loops. h r
B
2017 Robot Presect? venoi Taraet < »

Test Window.vi

Place the Test Window.vi inside of a loop in any VI (for instance in your Teleop.vi loop) and the
values will automatically update. Test Window.vi is in the navX-AE “Get” folder.

54

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Data Monitor (FRC)

B3 npedt Teher s Front Panel on Mivi Propectbqn g - [m] X

Flke Edit View Peojmct Opesle Took Wisdow Help E@
o & (W N | Vptapglication Fost v | Joe S BEE @R i Cpur 3 P

MXP 1/0O Expansion (FRC)

The “MXP I/O Expansion” example program demonstrates the use of the MXP /O Expansion
capabilities of the navX-MXP, including the following capabilities:

DIGITAL 1/O

Pulse-Width Modulation [PWM] (e.g., Motor Control)
Digital Inputs (e.g., Contact Switch closure)

Digital Outputs (e.g., Relay control)

Quadrature Encoders (e.g., Wheel Encoder)

ANALOG I/O

Analog Inputs (e.g., Ultrasonic Sensor)

Analog Input Trigger (e.g., Proximity Sensor trigger)
Analog Trigger Counter

Analog Output (e.g., Constant-current LED, Sound)

This example also demonstrates a simple method for calculating the ‘RoboRIO Channel
Number’ which corresponds to a given navX-MXP 10 Pin number.

55

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/08/LabviewNavX-AE_TestWindow.png
https://pdocs.kauailabs.com/navx-mxp/installation/io-expansion/

Examples
MXP 1/0O Expansion (FRC)

FRC C++ Example

Full C++ source code on GitHub

FRC Java Example

Full Java Source code on GitHub

FRC LabView Example

The navX-MXP FieldCentric-Drive LabView example shows how to make small modifications to

the LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to
implement high-accuracy Field-Centric drive.

RobotMain.vi

Documentation

|Robot Main imiplements the framework =
and scheduler for your rabatics pragram.

it should not be necessary to modify this
VL You should be able to eode your robet
withan the Team Vis described below,

1. Begin.vi and InitExpansioni0an

Called ance at beginning, to apen 10,
Jinitialize sensors and any globals, load
settings from a file, etc.

2. Auronamous Independent.vi
Autornatically started with the first
packet of autonomaous and aborted on the
last packet. Write thes Tearn V1ta loap for
the entirety of the autencmous penod.

Scheduling loop

v Robot Mode

“H| Teleop Enabled”

Fimish

Execute Teleop VI to react
Pazs Expansian to & new Drver Station packet
0 Objects to Vis

hat need them

1. TeleQOpan
Called each tirme a teleop D5 packet iz
received and robot is enabled,

Create 1100
refnums
5 nataalize

4. Desabled robot

Called each tirme & packet is recenved and
Jthe rebat is disabled.

5. Testwi

Called Automatically started with the first
est packet and aborted on the Last.
Muodify this ¥1 to carny out robot and
sensod validation tests,

7. Periodic Tasks.w
Parallel loops running at user-defined

LI!E.
. Finish.wi

Called befare exstang, 20 you can save
data, clean up Y0, etc.

Based on the robot mode, call the appropriate Team code
Double click an icon to open a Team W1 and miodify code

0|

Startup a Smartdashboard Metwork Tables Server.
Rusns in parallel with uter code.

A

Start Robot Communication.
Runs in parallel with user code.

|f|ﬁR'I
il

j |Ca.rq.-' out periodic tasks such
a5 control loops.

The RobotMain.vi invokes the InitExpansionlO.vi during initialization, and routes the resulting
DigitalloObjects and AnalogloObjects clusters to the Teleop.vi.

InitExpansionlO.vi

56

https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_ExpansionIO/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_ExpansionIO/
https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/labview_expansion_io_robotmain.png

Examples
MXP 1/0O Expansion (FRC)

The InitExpansionlO.vi instantiates the various objects which map onto the navX-MXP

Expansion IO Pins.

E ~$r M,
e Jptn T v"
GHan iovar Victor
B ¥
E Pelakar
Open | T"
FES'“ Jaguar _laguar
[}

CHAH OFEH
wDigital0 =] | FEan E
OFEH

=1

DigitalleObjects

— CHAN
+ Digitall0 FEin
D0 Out
E OFEH
— FEoM
W+ DigitallD = FiH Qi Cu,
E OFEH

H
» Digitall0 + Fegr

-

— AH
W+ DigitallD = PR

=

— GHEH

W+ DigitallD = PR
L]

— GHEH

W+ DigitallD = PR
[]

— GHEH

W+ DigitallD = PR
[]

CHAN

+ Analogln = FRIM

AnalogloOhbjects

AnTrig l:'g"‘ll:lig Ere
OPEM OFEN

|Up_a'D|:uwn Made T"

CH&H OFEH

GetChannelFromNavX-MXPPin.vi

F-nn_n

The GetChannelFromNavX-MXPPin.vi performs the translation from the navX-MXP Digital or
Analog Pin number to the corresponding RoboRIO Channel Number, which is provided to the
various VIs that open that particular port.

57

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/labview_expansion_io_init.png

Examples
MXP 1/0O Expansion (FRC)

navi-MXEP Pin Number

RoboRIC Channel Number

navE-MEP Pin Type

=3

Teleop.vi

The Teleop.vi reads the Joystick inputs and programs the output pins accordingly (PWM to
motor controllers, Digital Outputs and Analog Outputs). As well, values from the input pins
(Digital Inputs, Encoders and Analog Inputs) is retrieved and displayed on the Smart
Dashboard.

[Objects connected te nave MAP Digital I'O Pins)

§ This example demonstrates the use of the MXP 1'Q Expansion capabilities of the + I Mne
navX MXP, including the following capabilities:

Pulse-Width Modulation [PWM] (e.g., Motor Control)
Digital Inputs (e.g., Contact Switch closure)

Digital Outputs (e.g., Relay control) -
Quadrature Encoders (e.g.. Wheel Encoder)

Analog Inputs (e.g., Ultrasonic Sensor)

Anslog Input Trigger (e.g., Prowimity Sensar trigger)

Analog Trigger Counter Digitalle Dkjects
Analog Output (e.g. Constant-current LED, Sound) il
Match Info
e [T07 ot o]
This can help determine what has Enc_3and2
been run and for how long p
Joystick 0 1 by N Enc_land |-
1
I o i e] d 1 E
IE m : 4 = I

%&ntm =4 0 [— AnalogloObject

Analoglnl

H

H

%

Use to differentiate between i
First, Last, and Intermediate calls Tovetick 0 Axes b1

H

H

H

3

i

Jowstick D/Buttons

o+ 2

[
<

Duigen Analogin0Trigger

]
art S—
Bl

5

Each time we enter, report that Iﬂ.naloglnﬂinunml
we are running teleop - - - Wi
Publish the joystick data the NP 11O Toa] o8
TF ok robot sees to the dashboard Wioltage -
' % FraLT G

[Objects connected to nave MXP Analeg 170 Pins)

Full LabVIEW Project on GitHub

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/labview_expansion_io_channel_to_pin.png
https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/labview_expansion_io_teleop.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples

Guidance
Best Practices

Guidance
Best Practices

This page summarizes the recommended best practices when integrating navX-MXP with the
National Instruments RoboRIO™. Following these best practices will help ensure high reliability
and consistent operation.

1) Secure the navX-MXP circuit board to the Robot Chassis

Excessive vibration will reduce the quality of navX-MXP sensor measurements. The navX-MXP
circuit board should be mounted in such a way that it as firmly attached to the robot chassis.

2) Plan for RoboRIO Brownouts

The RoboRIO contains circuitry to remove power from the MXP connector when it detects an
input voltage drop below a certain voltage level; this is known as a Stage 2 brownout. While
brownouts do not typically occur during a FRC match (since fresh batteries are typically used at
these times), during practice matches brownouts are common. If the robot drive chain draws
large amounts of current, even for a short time, brownouts could potentially occur even with a
FRC match.

navX-MXP maintains state information that will be reset when the navX-MXP circuit board is
restarted. Avoiding navX-MXP restarts is very important if your robot software uses the “yaw”
angle.

To avoid a navX-MXP restart when stage 2 brownouts occur, a secondary power supply for the
navX-MXP circuit board should be provided. Fortunately, the RoboRIO provides just such a
power supply, since its onboard USB interface is powered by a boost regulator which will
provide 5V of power even when the RoboRIO input voltage (VIN) drops as low as 4.4 volts
(once the RoboRIO VIN drops lower than this, the RoboRIO itself will restart).

To address this situation, simply connect a USB cable from the navX-MXP circuit board to the

RoboRIO; if a brownout does occur, the navX-MXP circuit board will automatically switch to use
power from the RoboRIO’s USB port.

3) Understand and Plan for Calibration

Gyro/Accelerometer Calibration is vital to achieving high-quality navX-MXP readings. Be sure to
understand this process, and ensure that it completes successfully each time you use the robot.

If your robot moves during calibration, or if noticeable temperature changes occur during
calibration, the calibration process may take longer than normal.

59

https://pdocs.kauailabs.com/navx-mxp/?page_id=148
https://wpilib.screenstepslive.com/s/4485/m/24166/l/289498-roborio-brownout-and-understanding-current-draw
https://pdocs.kauailabs.com/navx-mxp/?page_id=197
https://pdocs.kauailabs.com/navx-mxp/?page_id=188

Guidance
Best Practices

Using the navX-MXP yaw angle before calibration completes may result in errors in robot
control. To avoid this situation, your robot software should verify that calibration has completed
(e.g., by calling the isCalibrating() function) before using navX-MXP data.

4) If using the MXP_connector, secure the navX-MXP circuit
board to the RoboRio

During operation of the robot, certain actions (for instance, driving over a bump at high speed)
may cause the navX-MXP circuit board to become dislodged from the MXP connector.

To avoid this case, when mounting the navx-MXP circuit board be sure to secure the navX-MXP
circuit board to the RoboRio via two correctly-sized screws.

5) Protect the Sensor

navX-MXP contains sensitive circuitry. The navX-MXP circuit board should be handled carefully.

An enclosure is recommended to protect the navX-MXP circuit board from excessive handling,
“swarf”, electro-static discharge (ESD) and other elements that could potentially damage navX-
MXP circuitry. The enclosure can also help prevent accidental shorts to ground which may
occur on the MXP Expansion 1/O pins.

6) Plan for Catastrophic Sensor Failure

Any electronic component can fail. To ensure that your robot can still function during a FRC
match even if such a failure does occur, your robot software should handle cases when
communication with sensors such as the navX-MXP is disrupted.

An easy way to accomplish this is to use the “isConnected()” indication, and only use navX-
MXP sensor data to control your robot when this is true.

Additionally, displaying whether the robot software is connected to the navX-MXP circuit board
on the driver “dashboard” can help the drivers quickly detect a connection problem.

7) Provide a “Zero Yaw” feature (for Field-Oriented Drive)

The navX-MXP gyro “yaw” angle will drift over time (approximately 1 degree/minute). While this
does not normally impact the robot during a FRC match, if using field-oriented drive during
extended practice sessions it may be necessary to periodically “zero” the yaw. Drivers should
be provided a simple way (e.g., a joystick button) with which to zero the yaw.

8) Avoid shorts on Expansion I/O pins

60

https://pdocs.kauailabs.com/navx-mxp/?page_id=148
https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/
https://pdocs.kauailabs.com/navx-mxp/?page_id=242

Guidance
Best Practices

If a short occurs between any of the MXP Expansion I/O pins, the POWER led on the RoboRIO
will turn red, and the navX-MXP circuit board will not receive power.

To protect against accidental shorts, Kauai Labs recommends a protective enclosure that at
least partially encases the MXP 1/O pins, such as the ‘“lid"-style enclosure created for the navx-
MXP.

9) If possible, mount the navX-MXP circuit board near the
center of rotation

Since navX-MXP measures rotation, errors in the measured angles can occur if the navX-MXP
circuit board is mounted at a point not near the robot center of rotation. For optimal results, the
navX-MXP circuit board should be mounted at the robot’s center of rotation. If the navX-MXP
circuit board cannot be mounted near the robot’s center of rotation, the offset from the center of
rotation can be used to correct the yaw angle.

10) Use OmniMount if navX-MXP is not mounted horizontally

By default, the navX-MXP’s motion processing requires the unit be mounted horizontally,
parallel to the earth’s surface; the yaw (Z) axis should be perpendicular to the earths surface.

If your RoboRIO is mounted vertically, you will need to enable the “OmniMount” feature in order
to get reliable, accurate yaw (Z) axis readings.

11) Learn how the sensor behaves by using the navxXUl

The navXUIl provides insight into the key navX-MXP features, and can help debug issues you
may encounter when integrating navX-MXP onto your robot. Running this user interface is
highly recommended for anyone using navX-MXP. You can even run the navXUIl while your
robot is simultaneously communicating with the navX-MXP circuit board via the TTL UART, 12C
or SPI interfaces.

Terminology

Several terms used throughout the navX-MXP libraries and documentation may not be
commonly understood and are defined herein.

Basic Terminology

A working knowledge of the following Basic Terminology is highly recommended when working
with navX-MXP or any other Inertial Measurement Unit (IMU).

61

https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/
https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/?page_id=222

Guidance
Terminology

Pitch, Roll and Yaw

Fitch Axis

i

Roll Axis

Pitch, Roll and Yaw are measures of angular rotation about an object’s center of mass, and
together provide a measure of “orientation” of that object with respect to an “at rest” position.
When units of degrees are used, their range is from -180 to 180 degrees, where 0 degrees
represents the “at rest” position of each axis.

AXxis Orientation relative to Rotational Motion
object’s center of mass
X (Pitch) Left/Right + Tilt Backwards
Y (Roll) Forward/Backward + Roll Left
Z (Yaw) Up/Down + Clockwise/ — Counter-
wise

Important Note: Pitch, Roll and Yaw angles represent rotation from the “origin” (0,0,0) of a
3-axis coordinate system. navX-MXP Pitch and Roll angles are referenced to earth’s gravity —
so when navX-MXP is flat, Pitch and Roll angles should be 0.

The Yaw angle is different — Yaw is not referenced to anything external. When navX-MXP
startup calibration completes, the Yaw angle is automatically set to O — thus at this point, O
degrees represents where the “head” of the navX-MXP circuit board is pointing. The Yaw angle
can be reset at any time after calibration completes if a new reference direction is desired.

Linear Acceleration

Linear Acceleration is a measure of the change in velocity in a specific direction. For example,
when a car starts from a standstill (zero relative velocity) and travels in a straight line at
increasing speeds, it is accelerating in the direction of travel.

AXis Orientation Linear motion
X Left/Right — Left / + Right

62

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/11/navX_Yaw_Pitch_Roll_Axes.png

Guidance

Terminology
Y Forward/Backward + Forward / — Backward
Z Up/Down + Up /- Down

Because the gyroscope and accelerometer axes are aligned, navX-MXP measures linear
acceleration in the same set of 3 axes used to measure Pitch, Roll and Yaw. However unlike
Pitch, Roll and Yaw, acceleration measures linear motion rather than rotation, and is measured
in units of G, with a range of +/- 2.0.

Compass Heading

A compass measures the earth’s magnetic field and indicates the current direction (heading)
relative to magnetic north (N). Compass Heading is measured in degrees and is similar to Yaw,
but has a few key differences:

e Compass Heading has a range of 0-360 (where magnetic north is 0).
e Compass Heading is absolute — it is referenced to magnetic north, and thus Compass
Heading does not drift over time

Important Note 1: Compass Heading relies upon being able to measure the earth’s magnetic
field. Since the earth’s magnetic field is weak, Compass Heading may not be able to measure
earth’s magnetic field when the compass is near a strong magnetic field such as that generated
by a motor.

Important Note 2: Magnetic North is not exactly the same as True North. Your robot can
calculate True North given a Magnetic North reading, as long as the current declination is
known. Declination is a measure of the difference in angle between Magnetic North and True
North, and changes depending upon your location on earth, and also changes over time at that
same location. An online calculator is provided allowing one to calculate declination for a given
earth location and date.

Altitude

63

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/11/Compass.png
https://adventure.howstuffworks.com/outdoor-activities/hiking/compass-or-gps2.htm
https://www.ngdc.noaa.gov/geomag-web/

Guidance
Terminology

Altitude is a measure of distance in the “up” direction from a reference; navX-MXP (Aero
Edition) calculates altitude above sea-level using a pressure sensor.

navX-MXP (Aero Edition) altitude has a range of 0 to 25,000 meters.
Important Note: Altitude is calculated based upon barometric pressure. In order to accurately
estimate altitude above the earth, navX-MXP should be configured with the sea-level barometric

pressure in the surrounding area. This setting can be configured via the navX-MXP Advanced
Configuration Tool.

3-D Coordinate System

navX-MXP 3-D Coordinate System

A 3-D Coordinate System uses one or more numbers (coordinates), often used to uniquely
determine the position of a point within a space measured by that system. The origin of a 3-D
coordinate system has a value of (0O, 0, 0).

navX-MXP features gyroscopes, accelerometers and magnetometers which are all aligned with
each other in a 3-D coordinate system. Each sensor type measures values with respect to that
coordinate system, as follows:

Gyroscopes: measure rotation (as shown in the green arrows) about each axis. The coordinate
system origin represents the center of the navX-MXP circuit board.

Accelerometers: measure acceleration, where the origin represents the position in space at
which the previous acceleration sample was acquired.

64

https://pdocs.kauailabs.com/navx-mxp/software/tools/advanced-configuration/
https://pdocs.kauailabs.com/navx-mxp/software/tools/advanced-configuration/
https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/06/TriAxis.png

Guidance
Terminology

Magnetometers: measure earth’s magnetic field, where the origin represents the center of the
navX-MXP circuit board.

Important Note: Because the navX-MXP Gyroscopes, Accelerometers and Magnetometers are
all aligned to this 3-D Coordinate System, navX-MiXP’s motion processor can also use Sensor
Fusion to provide additional information and processing including Tilt Correction, “Fused
Heading”, a Gravity Vector, World Reference Frame-based Linear Acceleration and
Quaternions, as discussed in the Motion Processing section below.

Motion Processing

Users should also have a working knowledge of the terms defined in the Motion Processing
Terminology.

Tilt Correction

Without correction, the compass heading calculated by a 3-axis magnetometer will only be
accurate if the magnetometers are held “flat” with respect to the earth. To ensure the compass
heading is valid even in cases when the sensor is “pitched” (Pitch angle != 0) or “rolled” (Roll
angle '= 0), navX-MXP performs “tilt correction” fusing the reading from the magnetometers
with the pitch and roll angles from the accelerometers. Once corrected, the compass heading is
aligned with the navX-MXP Z axis, which ensures that the Yaw angle and the Compass
Heading measure rotation similarly.

“Fused” Heading

Given the gravity-referenced orientation provided by the Yaw angle, as well as the absolute
compass heading angle which has been aligned to the navX-MXP 3-D coordinate system, both
angles can be fused together. As shown in the table below, over a period of several minutes this
can minimize the drift inherent in the Yaw angle, as well as provide an absolute reference for
the Yaw angle — as long as the magnetometer is calibrated and a valid magnetometer reading is
available every minute or so.

Value Accuracy Update Rate Drift
Yaw .01 degrees Up to 200 Hz ~1 degree/minute
Compass 2 degrees 1 Hz (if not magnetically = None
Heading disturbed)
Fused 2 degrees (as long as a valid Up to 200Hz None (~1 degree/minute,
Heading magnetometer reading is during periods of magnetic
received in the last minute or disturbance)
S0)

Like the Compass Heading, the Fused Heading has a range from 0-360 degrees.

Important Note: If the Compass Heading is not valid, the Fused Heading origin is the same as

65

Guidance
Terminology

the Yaw angle. When valid (magnetically undisturbed) compass readings are received, the
Fused Heading's origin shifts to magnetic north (O degrees on the Compass).

Gravity Vector

Accelerometers measure both acceleration due to gravity, as well as acceleration due to linear
acceleration. This fact makes using raw accelerometer data difficult. navX-MXP’s automatic
accelerometer calibration determines the component of measured acceleration which
corresponds to gravity, and uses this information together with gyroscope readings to calculate
a gravity vector, which represents acceleration due to gravity. Pitch and Roll angles are derived
from this gravity vector.

Once the gravity vector is understood, this value is then subtracted from the raw accelerometer
data to yield the acceleration due to linear motion.

Velocity and Displacement

Acceleration is defined as the change in Velocity. Therefore, linear velocity can be calculated by
integrating linear acceleration over time.

Velocity is defined as the change in Position, otherwise known as Displacement. Therefore,
linear displacement can be calculated by integrating linear velocity over time.

Important Note: Using currently-available MEMS-based accelerometers to calculate linear
velocity and displacement is subject to large amounts of error primarily due to accelerometer
“noise” (a difference between the actual acceleration and the measured acceleration inherent
with MEMS sensors). This noise not only accumulates, but is also squared in the case of
velocity, and is cubed in the case of displacement. Therefore, the resulting estimated velocity
and displacement values are not typically useful for robotic navigation. The amount of error in
displacement estimation can be several feet per second. As MEMS sensors improve in the
coming years and accelerometer noise is reduced by approximately 100 times its currently
value, this technique will become more useful for robotics navigation.

If you would like to experiment with using the navX-MXP to calculate displacement and velocity,
you can use the navXUl's “Experimental” button to bring up a dialog which displays the
integrated velocity and displacement values calculated in real-time by the navX-MXP.

World Reference Frame

Raw acceleration data measures acceleration along the corresponding sensor axis. This
measurement occurs in a reference frame known as “Body Reference Frame”. This works well
as long as the navX-MXP circuit board is in it's original orientation. However as the navX-MXP
circuit board rotates, the X and Y accelerometer axes no longer point “forward/back” and
“left/right” with respect to the original orientation. To understand this more clearly, consider how
the meaning of the term “left” changes once a robot has rotated 180 degrees? Introducing a

66

https://pdocs.kauailabs.com/navx-micro/software/navx-ui/

Guidance
Terminology

World Reference Frame solves this issue by providing a reference upon which to measure
“leftness”.

To account for this, navX-MXP’s motion processing adjusts each linear acceleration value by
rotating it in the opposition direction of the current yaw angle. The result is an acceleration value
that represents acceleration with respect to the area in which navX-MXP operates, which is
known as “World Reference Frame”. This world-frame linear acceleration value is much simpler
to use for tracking motion of an object, like a robot, which might rotate while it moves.

Important Note: navX-MXP Linear Acceleration values are in World Reference Frame.

Advanced
Advanced users may require knowledge of the following terminology.

Quaternions

A quaternion is a four-element vector that can be used to encode any rotation in a 3D
coordinate system. This single 4-element vector value can describe not only rotation about a
reference frame’s origin (Pitch, Roll and Yaw) but also the rotation of that entire reference
frame with respect to another. Furthermore, when Pitch, Roll and Yaw measures to perform
certain calculations, it is not possible to clearly ascertain orientation when two axes are aligned
with each other; this condition is referred to as “Gimbal Lock”. For robotics applications, Pitch,
Roll and Yaw are sufficient, however for certain aerospace applications, Quaternions may be
required to handle all possible orientations.

navX-MXP uses Quaternions internally, and also provides the 4 quaternion values for use by
those who might need them.

Selecting an Interface

The navX-MXP provides several methods for communicating with robotics control applications:
e MXP 12C

e MXP SPI
e USB 2.0

Streaming vs. Register-based Communication
The navX-MXP interfaces fall into two types: Streaming and Register-based.

Streaming: data is sent at regular intervals by the navX-MXP, and the host is notified when new
data arrives. To support the low bitrate of the TTL UART interface, the streaming data is sent in

67

https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/USB#USB_2.0

Guidance
Selecting an Interface

two different formats: Processed Data and Raw data. Streaming is used over the TTL UART
and USB interfaces. More details on the communication detail are available in the Serial
Protocol Definition.

Register-based: communication is initiated by the host whenever new data is desired, and the
host can request any data required. Register-based communication is used over the 12C and
SPI interfaces. More details on the communication detail are available in the Register Protocol
Definition.

Comparing the navX-MXP Communication Interfaces

Interface Speed Latency Type Cable distance Max
Type Update
Rate
SPI 2 mbps <lms Register-based <1 meter 200
12C 400 kbps ~10ms Register-based 1 meter 200
USB 12 mbps 1ms Streaming 6 meters 200

Recommendations

Based upon the above, the following recommendations are provided for selecting the best navX-
MXP communications interface:

— If mounting the navX-MXP directly on the RoboRIO, the SPI interface is preferred for it’s high
speed and low latency.

— If mounting the navX-MXP separately from the RoboRIO using an extension cable and if MXP
IO support is desired, run SPI at a lower speed. The I2C interface is also a reasonable option.

— If mounting the navX-MXP separately from the RoboRIO, and MXP 10 support is not desired
and only Processed or Raw Data (not both) is needed, USB may be used. This configuration is
useful when using the navX-MXP magnetometer data, since it makes it possible to mount the
navX-MXP far away from motors. This configuration is also useful when accessing navX-MXP
data from a separate processor, such as a PC or a separate video processor. However, please
note that in certain cases when other USB devices (e..g, cameras) are connected to the same
RoboRIO USB bus, and are used simultaneously with navX-MXP, sometimes the
communication is interrupted. For this reason, USB is not recommended on the RoboRIO,
especially if you are connecting with other USB devices on the same USB bus.

Gyro/Accelerometer Calibration

Gyro/Accelerometer Calibration

68

https://pdocs.kauailabs.com/navx-mxp/advanced/serial-protocol/
https://pdocs.kauailabs.com/navx-mxp/advanced/serial-protocol/
https://pdocs.kauailabs.com/navx-mxp/advanced/register-protocol/
https://pdocs.kauailabs.com/navx-mxp/advanced/register-protocol/

Guidance
Gyro/Accelerometer Calibration

navX-MXP onboard sensors require calibration in order to yield optimal results. We highly
recommend taking the time to understand this calibration process — successful calibration is
vital to ensure optimal performance.

Accurate Gyroscope Calibration is crucial in order to yield valid yaw angles. Although this
process occurs automatically, understanding how it works is required to obtain the best results.

If you are tempted to ignore this information, please read the section entitled “The Importance
of Stillness” at the end of this page.

Calibration Process

The navX-MXP Calibration Process is comprised of three calibration phases:

e Factory Calibration
e Startup Calibration
¢ On-the-fly Calibration

69

Guidance
Gyro/Accelerometer Calibration

Initialization

Factory
Calibration Data
Present?

= Although not required, re-running
Factory Calibration) Factory calibration at in-use

temperature may increase accuracy
= Ssensor must be still.

I

Approximately 15 seconds

& Factory Cal
Complete?

¥
Apply Factory N
Calibration Data
¥
¥

Approximately 10 seconds 12 Startup Calibation) sensor must be still.

) Once acquired, Initial Yaw Offset

Initial Yaw Offset
Accumulation

wensor still for

s subtracted from all yaw angles

2 seconds?

L4 During Normal Operation, On-the-fly
Narmal Operation $ recalibration occurs whenever still for 15

ceconds. This accounts for temperature

shifts.

Factory Calibration

Before navX-MXP units are shipped, the accelerometers and gyroscopes are initially calibrated
at the factory; this calibration data is stored in flash memory and applied automatically to the
accelerometer and gyroscope data each time the navX-MXP circuit board is powered on.

Note that the onboard gyroscopes are sensitive to temperature changes. Therefore, since the
average ambient temperature at the factory (on the island of Kauai in Hawaii) may be different
than in your environment, you can optionally choose to re-calibrate the gyroscope by pressing
and holding the “CAL” button for at least 10 seconds. When you release the “CAL” button,
ensure that the “CAL” Led flashes briefly, and then press the “RESET” button to restart navX-
MXP. When navX-MXP is re-started, it will perform the Initial Gyro Calibration — the same
process that occurs at our factory. NOTE: It is very important to hold navX-MXP still, and
parallel to the earth’s surface, during this Initial Gyro Calibration period. You might consider

70

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/CalibrationProcess1.png

Guidance
Gyro/Accelerometer Calibration

performing this process before using your robot the first time it is used within a new environment
(e.g., when you arrive at a FTC competition event).

The value of re-running Factory Calibration at the same temperature navX-MXP will be operated
at is potentially increased yaw accuracy as well as faster Startup Calibration. If a significant
temperature shift has occurred since the last Factory Calibration, the Startup Calibration time
may take longer than normal, and it's possible that yaw accuracy will be diminished until the
next On-the-fly Gyro Calibration completes.

Startup Calibration

Startup Calibration occurs each time the navX-Micro is powered on, and requires that the
sensor be held still in order to complete successfully. Using the Factory Calibration as a starting
point, the sensor calibrates the accelerometers and adjusts the gyroscope calibration data as
well based upon current temperature conditions.

If the sensor continues to move during startup calibration, Startup Calibration will eventually
timeout — and as a result, the navX-Micro yaw angle may not be as accurate as expected.

Initial Yaw Offset Calibration

Immediately after Startup Calibration, an Initial Yaw Offset is automatically calculated. The
purpose of the Initial Yaw Offset is to ensure that whatever direction the “front” of the navX-
MXP circuit board is pointed to at startup (after initial calibration is applied) will be considered “0
degrees”.

Yaw Offset Calibration requires that navX-MXP be still for approximately 2 seconds after Startup
Calibration completes. After approximately 2 seconds of no motion, navX-MXP will acquire the
current yaw angle, and will subtract it from future yaw measurements automatically. The navX-
MXP protocol and libraries provide a way to determine the yaw offset value it is currently using.

NOTE: If navX-MXP is moving during startup, this Yaw Offset Calibration may take much longer
than 2 seconds, and may not be calculated at all if the sensor continues moving long enough.
Therefore it is important to keep navX-Micro still until initial calibration and Initial Yaw Offset
calibration completes.

On-the-fly Gyro Calibration

In addition to Startup Calibration, during normal operation navX-MXP will automatically re-
calibrate the gyroscope (e.g., to account for ongoing temperature changes) during operation,
whenever it detects 8 seconds of no motion. This process completes after about 7-8 more
seconds, and is completely transparent to the user. Therefore each time navX-MXP is still for
approximately 15 seconds, the gyroscopes are re-calibrated “on-the-fly”. The purpose of On-
the-fly Gyro re-calibration is to help maintain yaw accuracy when shifts in ambient temperature
occur during operation.

71

Guidance
Gyro/Accelerometer Calibration

This On-the-fly Gyro Calibration can help deal with cases where the sensor was moving during
Startup Calibration, but note that the yaw is not zeroed at the completion of On-the-fly
Calibration. So once again, it's important to keep the sensor still during Startup Calibration.

Runtime Yaw Zeroing

Your robot software can optionally provide the robot operator a way to reset the yaw angle to
Zero at any time. Please see the documentation for the navX-MXP libraries for more details.

The importance of stillness

This is the most important takeaway from this discussion: It is very important that navX-MXP be
held still during the above Initial Gyro and Initial Yaw Offset calibration periods. In support of
this, navX-MXP indicates when it is calibrating; we recommend you incorporate this information
into your software. Please see the discussion of the navXUl, and the navX-MXP libraries for
more details on this indication.

Magnetometer Calibration Tool

Please visit navX-Sensor Support for Magnetometer Calibration Tool usage instructions.

Yaw Drift

A gyroscope measures the amount of angular rotation about a single axis. Since the gyroscope
measures changes in angular rotation, rather than an absolute angle, calculation of the actual
current angle of that axis is estimated via numerical integration rather than an exact
measurement.

Any Inertial Measurement Unit (IMU), including navX-MXP, that integrates a signal from a
gyroscope will also accumulate error over time. Accumulated error is due to several factors,
including:

e Quantization noise (which occurs when an analog-to-digital converter (ADC) converts a
continuous analog value to a discrete integral value)

e Scale factor error (which occurs due to manufacturing errors causing a specified scale
factor [e.g., 256 bits per unit G] to be incorrect)

e Temperature instability (which occurs when a sensor is more or less sensitive to an input
as temperature changes)

¢ Bias error (which occurs because the value the sensor reports at ‘zero’ is not known
well enough to ‘subtract’ that value out during signal processing)

72

https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/
https://pdocs.kauailabs.com/navx-mxp/software/navx-mxp-ui/
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/
https://www.kauailabs.com/support/navx-mxp/kb/faq.php?id=25
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Quantization_(signal_processing)

Guidance
Yaw Drift

Over time, these errors accumulate leading to greater and greater amounts of error.

With the navX-MXP, Quantization error is minimized due to the MPU-9250’s internal signal
conditioning, high-resolution 16-bit Analog-to-Digital Converters (ADC), and extremely fast
internal sampling (200Hz). Scale factor error is easily corrected for by factory calibration, which
the navX-MXP provides. So these two noise sources are not significant in the navX-MXP.

The remaining sources of error — temperature instability and bias error — are more challenging to
overcome:

e Gyro bias error is a major contributor to yaw drift error, but is inherent in modern MEMS-
based gyroscopes like the MPU-9250.

e Temperature instability can cause major amounts of error, and should be managed to
get the best result. To address this, the MPU-9250 automatically re-calibrates the gyro
biases whenever it is still for 8 seconds, which helps manages temperature instability.

Errors in the navX-MXP Pitch and Roll values to be extremely accurate over time since
gyroscope values in the pitch/roll axes can be compared to the corresponding values from the
accelerometer. This is because when navX-MXP is still, the accelerometer data reflects only the
linear acceleration due to gravity.

Correcting for integration error in the Yaw axis is more complicated, since the accelerometer
values in this axis are the same no matter how much yaw rotation exists.

To deal with this, several different “data fusion” algorithms have been developed, including:

e Complementary filter
e Extended Kalman filter (EKF)
¢ Direction Cosine Matrix filter (DCM)

Note: See the References page for links to more information on these algorithms.
These algorithms combine the acceleromter and gyroscope data together to reduce errors.

The Complementary and EKF filter algorithms are designed to process 3-axis accelerometer
and 3-axis gyroscope values and yield yaw/pitch/roll values. The Complementary filter is a
simple approach, and works rather well, however the response time is somewhat slower than
the EKF, and the accuracy is somewhat lower.

The DCM filtering approach is similarly accurate and responsive as the EKF, however it requires
information from a 3-axis magnetometer as well to work correctly. Since the magnetometer on a
FIRST FRC robot typically experiences significant amounts of magnetic disturbance, the DCM
algorithm is not well suited for use in a Robotics Navigation Sensor.

For these reasons, the EKF is the preferred filtering algorithm to provide the highest
performance IMU on a FIRST FRC robot. However, the EKF algorithm is complex and difficult to

73

https://pdocs.kauailabs.com/navx-mxp/advanced/techical-references/

Guidance
Yaw Drift

understand, making it typically beyond the capabilities of many robotics engineers. The navX-
MXP circuit board uses the Invensense MPU-9250 IC, and this IC implements a proprietary
algorithm which is widely believed to be an EKF (it exhibits similar accuracy to documented EKF
implementations on MEMS acceleromter/gyroscope sensors).

With this processing, navX-MXP exhibits yaw drift on the order of ~1 degree per minute; yaw
drift is typically much lower when navX-MXP is still.

Tips

What follows are some tips on how to deal with the yaw drift within the context of a FIRST FRC
competition.

In general, the yaw will not drift significantly during a FRC match, based upon the following
calculation:

yaw drift(degrees) at end of match = yaw drift (~1 degree/minute) x match length (2.5
minute) = ~2.5 degrees

However, during long practice matches the drift may become noticeable, and can be dealt with
using the following approaches:

1) The simplest approach which is supported by the navX-MXP RoboRIO libraries is to
periodically “re-zero” navX-MXP by applying an offset to the navX-MXP yaw angle. To use this
approach, when the robot is in the correct orientation, a driver can press a button which causes
an offset to be added so that the reported angle at that orientation is O.

2) Even though the navX-MXP magnetometer will likely give erroneous readings once the robot
motors are energized, a calibrated magnetometer can potentially provide a stable reading
during the moments before a FRC competition round. The navX-MXP provides a 9-axis “fused
heading” which is combined with the ~1 degree per minute of drift in the yaw angles. Using the
“fused heading”, it is possible to calculate the robots absolute orientation and maintain it. With
the “fused heading”, that drift will be updated w/the absolute heading from the compass
whenever a compass reading which is free from magnetic disturbance is detected. Note that to
be effective this requires the magnetometer to be calibrated. Once calibrated, an initial
magnetometer reading undisturbed by magnetic disturbances can be acquired at the beginning
of a match, before the motors are energized. If the sensor is placed far enough away from
motors, it may be possible to also get an undisturbed magnetometer during a match.

74

Support
Support

Support
Support

Please visit navX-Sensor Support if you are experiencing difficulty or trouble.
In addition, some common needs are addressed:

e Instructions for updating the navX-MXP Firmware
¢ The navX-MXP Discussion Forum
¢ A “factory test” procedure which can verify the navX-MXP circuit board is functioning

properly

Firmware Archive

The Firmware Archive includes past navX-MXP firmware releases. Please visit navX-Sensor
Support to access the firmware archive.

Factory Test Procedure

The Factory Test Procedure verifies correct operation of the circuit board and it's key
components. Please visit navX-Sensor Support for Factory Test Procedure instructions.

Software Archive

The navX-MXP Software Archive includes past navX-MXP software releases.
NOTE: Kauai Labs strongly recommends using the latest software versions.

To download an archived navX-MXP software version, right-click on the version number and
download the file to your computer, and run the setup.exe file.

2018 FRC Season Release

75

https://www.kauailabs.com/support/navx-mxp/
https://pdocs.kauailabs.com/navx-mxp/support/updating-firmware/
https://groups.google.com/group/navx-mxp
https://pdocs.kauailabs.com/navx-mxp/support/factory-test-procedure/
https://www.kauailabs.com/support/navx-mxp/kb/faq.php?id=49
https://www.kauailabs.com/support/navx-mxp/kb/faq.php?id=50
https://pdocs.kauailabs.com/navx-mxp/software/

Support
Software Archive

Version Number: 3.0.348

The cross-platform build is also available for non-Windows platforms.

2017 FRC Season Release
Version Number: 3.0.329

The cross-platform build is also available for non-Windows platforms.

2016 FRC Season Release
Version Number: 3.0.263
Change Summary
e Added new “Omnimount” capabilities
¢ Adds onboard integration of Acceleration and Velocity estimates

¢ Adds onboard “yaw reset” feature
¢ Fixes some reliability issues w/I2C and SPI communication

76

https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp_2018frc.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp-libs_2018frc.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp_2017.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp-libs_2017.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp_2016.zip

Advanced
Serial Protocol

Advanced
Serial Protocol

In order to communicate sensor data to a client (e.g., a RoboRio robot controller) the navX-MXP
software uses a custom protocol. This protocol defines messages sent between the navX-MXP
and the client over a serial interface, and includes an error detection capability to ensure
corrupted data is not used by the client.

The navX-MXP Serial protocol uses two message types, the legacy ASCII messages initially
introduced in the nav6 sensor, and the modern binary messages introduced in the navX-MXP.

Source code that implements the navX-MXP ASCII and binary protocols in Java and C++ are
provided to simplify adding support for the navX-MXP protocol to a software project.

Message Structure

ASCII Protocol Messages

Each navX-MXP Serial ASCII protocol message has the following structure:

Start of Message Message ID Message Body Message Termination
1 byte 1 byte length is message-type 4 bytes
dependent

Binary Protocol Messages

Each navX-MXP Serial Binary protocol message has the following structure:

Start of Binary Binary Message ID Message Body Message
Message Message Message Termination
Indicator Length
1 byte 1 byte 1 byte 1 byte length is 4 bytes
message-type
dependent

Data Type Encoding (ASCII)

Basel6 encoding is used for ASCIl message elements, as follows:

Data Type Encoding Example

Float (Sign)(100s)(10s)(1s).(10ths)(1 *-132.96'. * 257.38’
00ths)

8-bit Integer (HighNibble)(LowNibble) ‘EQ’

77

https://github.com/kauailabs/navxmxp/tree/master/java/navx/src/com/kauailabs/navx
https://github.com/kauailabs/navxmxp/tree/master/stm32/navx-mxp

Advanced
Serial Protocol

16-bit Integer (HighByte,HighNibble)(HighByt ‘1A0F
e,LowNibble)(LowByte,HighNib
ble)(LowByte,LowNibble)

Data Type Encoding (Binary)

Binary encoding is used for all Binary message elements. All Binary-formatted data types that
are signed are encoded as 2’s complement. All multi-byte data types are in little-endian format.
Certain non-standard ‘packed’ data types are used to increase storage efficiency.

Data Type Range Byte Count
Unsigned Byte 0 to 255 1
Unsigned Short 0 to 65535 2
Signed Short -32768 to 32768 2
Signed Hundredths -327.68 to 327.67 2
Unsigned Hundredths 0.0 to 655.35 2
Signed Thousandths -32.768 to 32.767 2
Signed Pi Radians -2102 2
Q16.16 -32768.9999 to 32767.9999 4
Unsigned Long 0 to 4294967295 4

*Unsigned Hundredths: original value * 100 rounded to nearest integer
*Signed Hundredths: original value * 100 rounded to nearest integer

*Signed Thousandths: original value * 1000 rounded to nearest integer
*Signed Pi Radians: original value * 16384 rounded to nearest integer

Start of Message

Each message begins with “start of message” indicator (a ‘!’ character), which indicates that
the following bytes contain a message.

Binary Message Indicator

Each binary message includes a “binary message” indicator (a ‘# character), which indicates
that the following bytes contain a binary message.

Binary Message Length

Each Binary message contains a length value (a value from 0-255), which indicates that the
number of bytes which follow in the Message Body and Message Termination.

Message ID

The Message ID indicates the type of message, which may be one of the following:

78

https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Endianness#Little-endian
https://en.wikipedia.org/wiki/Q_(number_format)

Advanced
Serial Protocol

ID Message Type Encoding

Yy’ Yaw/Pitch/Roll/Compass ASCII
Heading Update

‘g’ Raw Data Update ASCII

P’ AHRS + Position Data Update Binary

‘'S’ Stream Configuration ASCII
Command

‘s’ Stream Configuration ASCII
Response

r Integration Control Command Binary
j’ Integration Control Response Binary

Message Body

The message body differs depending upon the Message Type; the various Message Body
specifications are listed below.

Message Termination

The final four bytes of each Serial protocol message contain a Basel6 unsigned 8-bit checksum
(encoded in 2 bytes as an ASCII 8-bit integer) followed by a carriage return and then a line feed
character.

Checksum

The checksum is calculated by adding each byte of the message except the bytes within the
Message Termination itself. The checksum is accumulated within an 8-bit unsigned byte.

New Line

The carriage return (0x10) and newline characters (0x13) are present at the end of the message
so that when the message is displayed in a console window, a new line will be inserted in the
console at the end of the message.

Message Body Definitions

Yaw/Pitch/Roll/Compass Heading Update Message

The Yaw/Pitch/Roll/Compass Heading Update message indicates the navX-MXP current
orientation and heading, in units of degrees, as follows:

Byte Offset Element Data Type Unit
0 Yaw Float Degrees (-180 to 180)

79

https://en.wikipedia.org/wiki/Carriage_return
https://en.wikipedia.org/wiki/Newline

Advanced
Serial Protocol

7 Pitch Float Degrees (-180 to 180)
14 Roll Float Degrees (-180 to 180)
21 Compass Heading Float Degrees (0 to 360)

Raw Data Update Message

The Raw Data update message communicates the raw gyro, accelerometer, magnetometer and
temperature data. This data bypasses the Digital Motion Processor, and allows the individual
sensors to be used directly without any intervening processing. This can allow the following
types of use:

e Access to instantaneous measures of angular velocity in each of the X, Y and Z axes,
provided by the tri-axial gyroscopes. Note that the accelerometer and gyroscope data
has already had bias calibration applied.

e Additionally, raw magnetometer data is provided. Note that the raw magnetometer data
may have already had soft/hard iron calibration applied, if the navX-MXP magnetometer
calibration procedure has already been completed.

Byte Offset Element Data Type

0 Gyro X (15-bits, signed) 16-bit Integer

4 Gyro Y (15-bits, signed) 16-bit Integer

8 Gyro Z (15-bits, signed) 16-bit Integer

12 Acceleration X (16-bits, signed) 16-bit Integer

16 Acceleration Y (16-bits, signed) 16-bit Integer

20 Acceleration Z (16-bits, signed) 16-bit Integer

24 Magnetometer X (12 bits, 16-bit Integer
signed)

28 Magnetometer Y (12 bits, 16-bit Integer
signed)

32 Magnetometer Z (12 bits, 16-bit Integer
signed)

36 Temperature (Centigrade Float
degrees)

Gyro Device Units: value in deg/sec * gyro full scale range
Accelerometer Device Units: value in G * accelerometer full scale range

Magnetometer Device Units: value in uTesla * .15

AHRS / Position Data Update

Byte OffsetElement Data Type Unit
0 Yaw Signed Hundredths Degrees
2 Pitch Signed Hundredths Degrees

80

Advanced

Serial Protocol
4 Roll Signed Hundredths Degrees
6 Compass Unsigned Degrees
Heading Hundredths
8 Altitude Signed 16:16 Meters
12 Fused Heading Unsigned Degrees
Hundredths
14 Linear Accel X Signed G
Thousandths
16 Linear Accel Y Signed G
Thousandths
18 Linear Accel Z Signed G
Thousandths
20 Velocity X Signed 16:16 Meters/Sec
24 Velocity Y Signed 16:16 Meters/Sec
28 Velocity Z Signed 16:16 Meters/Sec
32 Displacement X Signed 16:16 Meters
36 Displacement Y Signed 16:16 Meters
40 Displacement Z Signed 16:16 Meters
44 Quaternion W Signed Pi Radians Pi Radians
46 Quaternion X Signed Pi Radians Pi Radians
48 Quaternion Y Signed Pi Radians Pi Radians
50 Quaternion Z Signed Pi Radians Pi Radians
52 MPU Temp Signed Hundredths Centigrade
54 Op. Status Uint8 NAVX_OP_STATUS
55 Sensor Status Uint8 NAVX SENSOR_STATUS
56 Cal. Status Uint8 NAVX_CAL_STATUS
57 Selftest Status Uint8 NAVX_SELFTEST_STATUS

Stream Configuration Command

By default, navX-MXP begins transmitting YPR Updates upon power up. The Stream
Configuration Command is sent in order to change the type of navX-MXP Streaming Update

transmitted

Byte Offset
0
1

to the client.

Stream Type

y
Ag)
lpl

Element Data Type
Stream Type 8-bit ASCII Character
Update Rate (Hz) — Valid 8-bit Integer
range: 4-60
Description

Yaw, Pitch, Roll & Compass Heading Update
Gyro (Raw) Data Update
AHRS + Position Data Update

Stream Configuration Response

Whenever a Stream Configuration Command is received, navX-MXP responds by sending a

81

http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_OP_STATUS
http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_SENSOR_STATUS
http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_CAL_STATUS
http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_SELFTEST_STATUS

Advanced
Serial Protocol

Stream Configuration Response message, which is formatted as follows:

Byte Offset Element Data Type

0 Stream Type 8-bit ASCII Character

1 Gyroscope Full Scale Range 16-bit Integer
(Degrees/sec)

5 Accelerometer Full Scale 16-bit Integer
Range (G)

9 Update Rate (Hz) 16-bit Integer

13 Calibrated Yaw Offset Float
(Degrees)

20 Reserved 16-bit Integer

24 Reserved 16-bit Integer

28 Reserved 16-bit Integer

32 Reserved 16-bit Integer

36 Flags 16-bit Integer

Flag value Desription

0,1 Startup Gyro Calibration in progress

2 Startup Gyro Calibration complete

Integration Control Command

The Integration Control Command is sent in order to cause certain values being integrated on
the navX-MXP to be reset to O.

Byte Offset Element Data Type

0 Action uint8
(NAVX_INTEGRATION_CTL)

1 Parameter uint32

Integration Control Response

The Integration Control Response is sent in response to an Integration Control Command,
confiming that certain values being integrated on the navX-MXP have been reset to 0.

Byte Offset Element Data Type

0 Action uint8
(NAVX_INTEGRATION_CTL)

1 Parameter uint32

Register Protocol

In addition to the streaming Serial protocol, navX-MXP may be accessed over the 12C and SPI
buses, using a register-based protocol. This page documents the register-based protocol used

82

http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_INTEGRATION_CTL
http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_INTEGRATION_CTL

Advanced
Register Protocol

on both the 12C and SPI bus.

Register-based protocol overview

Unlike the streaming Serial protocol, which periodically sends out updates messages whenever
new data is available, the register based protocol is a “polled” interface, in that the consumer of
the navX-MXP data (in this case referred to as a “bus master”) can request data from the navX-
MXP at any time. At the same time, when using the register-based protocol the bus master does
not know when new data is available.

To help this situation, a timestamp — which is updated whenever new data is available — is made
available. Therefore, the general approach to ensure each new data sample is retrieved is to
regularly (at the navX-MXP update rate) retrieve both the timestamp and the data of interest),
and if the timestamp differs from the previous timestamp by the update rate as expressed in
milliseconds, then the data sample just retrieved is current, and no data has been missed.

[2C Overview

The navX-MXP responds to 7-bit address 50 (0x32) on the 12C bus. If accessing the navX-MXP
via the MXP 12C bus, ensure that no other device at that address is on the same bus.

The navX-MXP 12C bus operates at a speed up to 400Khz.

When accessing the navX-MXP via the 12C bus, this following pattern is used:

— The 12C bus master sends the navX-MXP 12C address. The highest bit is set to indicate the
bus master intends to write to the navX-MXP. If the highest bit is clear, this indicates the bus
master intends to read from the navX-MXP.

— The 12C bus master next sends the starting register address it intends to write to or read from.
— The 12C bus master next initiates 12C bus transactions. The navX-MXP supports 12C burst
mode for read operations, therefore the navX-MXP will respond with register values as long as
the 12C bus master continues the transaction, and as long as the last register address has not

yet been reached.

If instead the 12C bus master intends to write data to a writable navX-MXP register, the bus
master should transmit the new register value immediately after sending the register address.

SPI Overview

The navX-MXP SPI data is communicated as follows:

— Most-significant bit first — Maximum Bitrate: 2mbps — Clock Polarity/Clock Phase —
Mode 3

83

Advanced
Register Protocol

Clock Phase (CPHA)
CPHA = 0 CPHA = |

e ldelal! T ltal
SOmpie somple

‘§']
S 9
— J —— ——
£ MODE O | MODE 1
O
L ’ \
£ =
Y |
iR
o ow
MODE 2 MODE 3
somple \ somple J

When accessing the navX-MXP via the SPI bus, this following pattern is used:

— When the SPI bus master is not communicating with the navX-MXP, the SPI bus master must
hold the chip select (CS) line high.

— The SPI bus master lowers the CS line.

— The SPI bus master next transmits the register address it intends to read from or write to. If
writing, the upper bit (0Ox80) must be set; if this upper bit is clear, this indicates a read
transaction.

— If the SPI bus master is reading, it next transmits the count of registers it wishes to read from.
This count must be at least 1, and must be not exceed the maximum register address less the

requested register address.

— If the SPI bus master is writing, it transmits the register value to be written to the specified
register address.

— The SPI bus master finally transmits an 8-bit CRC (see CRC calculation section below) which
is calculated on the register address and count values previously transmitted.

— If the SPI bus master is writing, it raises the CS line to complete the write sequence.
— If the SPI bus master is reading:

— The SPI bus master raises the CS line.

84

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/spi_polarity_and_phase.png

Advanced
Register Protocol

— The SPI bus master delays for 200 microseconds, giving the navX-MXP sufficient time to
prepare for the upcoming SPI bus transaction.

— The SPI bus master lowers the CS line.
— The SPI bus master initiates a series of SPI bus transactions, where the number of

individual 8-bit transfers is equal to the count previously specified, plus one additional
transfer for a CRC value transmitted by the nav-MXP.

— The SPI bus master raises the CS line to complete the read sequence.

CRC Calculation

The SPI protocol requires use of a cylic redundancy check (CRC) allowing the detection of
corrupted data transmission over the high-speed SPI bus. Each SPI protocol message must
end with a byte containing the CRC value.

The SPI protocol uses a 7-bit CRC with a polynomial value of 0x91.

For example code to calculate the CRC value, please see Line 445 of the IMURegisters.h
source code.

navX-MXP Register Data Types

All multi-byte registers are in little-endian format.
All registers with ‘signed’ data are 2's-complement.

Data Type Range Byte Count
Unsigned Byte 0 to 255 1
Unsigned Short 0 to 65535 2
Signed Short -32768 to 32768 2
signed hundredths -327.68 to 327.67 2
Unsigned Hundredths 0.0 to 655.35 2
Signed Thousandths -32.768 to 32.767 2
Signed Pi Radians -2102 2
Q16.16 -32768.9999 to 32767.9999 4
Unsigned Long 0 to 4294967295 4

*Unsigned Hundredths: original value * 100 to rounded to nearest integer
*Signed Hundredths: original value * 100 rounded to nearest integer
*Signed Thousandths: original value * 1000 rounted to nearest integer
*Signed Pi Radians: original value * 16384 rounded to nearest integer

85

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://github.com/kauailabs/navxmxp/blob/master/stm32/navx-mxp/IMURegisters.h
https://github.com/kauailabs/navxmxp/blob/master/stm32/navx-mxp/IMURegisters.h
https://en.wikipedia.org/wiki/Endianness#Little-endian
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Q_(number_format)

Advanced
Register Protocol

navX-MXP Register Map

Address (Hex) Name Access Range/Data Type
0x00 WhoAml Read-only 50 (0x32): navX-MXP
0x01 Board Revision Read-only Unsigned byte
0x02 Firmware Major VersionRead-only Unsigned byte
0x03 Firmware Minor VersionRead-only Unsigned byte
0x04 Update Rate Read/write Unsigned byte (Hz)
0x05 Accel FSR Read-only Unsigned byte
(Degrees/Sec)
0x06-0x07 Gyro FSR Read-only Unsigned short(G)
0x08 Operational Status Read-only See
NAVX_OP_STATUS
0x09 Calibration Status Read-only See
NAVX CAL_STATUS
O0x0A Self-test Status Read-only See NAVX_SELFTEST
_STATUS
0x0B Capability Flags (low) Read-only See
NAVX_ CAPABILITY
0x0C Capability Flags (high) Read-only
0x0D-0x0F n/a Read-only

Open-source Hardware/Software

The navX-MXP project is completely open source, including schematics, firmware and design
files for an enclosure.

These sources are available online at the navX-MXP _Github Repository.

Firmware Customization

The navX-MXP was developed/debugging using the following software tools, which (with the
exception of the Debugging hardware) are open-source or freely-available. The only component
you may want to purchase is the inexpensive ST-LINK/V2 JTAG programmer/debugger
described below.

Install Compiler

Install the free Code sourcery G++ Lite compiler for the ARM Cortex processor used in the nav-
MXP.

Download URL:

86

https://github.com/kauailabs/navxmxp

Advanced
Firmware Customization

https://sourcery.mentor.com/s [/lite/arm/portal/subscription? @template=lite

After installing, the compiler is installed into folder (32-bit Windows)

C:\Program Files\CodeSourcery\Sourcery G++ Lite

For 64-bit Windows, it is installed into:

C:\Program Files (x86)\CodeSourcery\Sourcery G++ Lite

Add the path to the “bin” director underneath the Code Sourcery G++ Lite installation directory,
so that the compiler is on the path.

Install Eclipse IDE

Install the Eclipse IDE for C/C++ Developers at the following download URL:

https://www.eclipse.org/downloads/

If you already have eclipse installed w/out the C/C++ Development tools (CDT) you will need to
install them, too:

CDT 8.1.2 (or later)

87

https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription?@template=lite
https://www.eclipse.org/downloads/

Advanced
Firmware Customization

A URL for this software, including the CDT, is at:

https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junosr2

Install the Zylin embedded CDT Plugin

This is installed from within Eclipse, since it is an Eclipse Plugin. If you are unfamiliar
with installingn Eclipse plugins, please visit this URL for more information on the

process:

https://wiki.eclipse.org/FAQ_How_do_|_install_new_plug-ins%3F

Zylin Plugin Update URL: http://opensource.zylin.com/embeddedcdt.html

Import the project into Eclipse

Open up eclipse, and import the project which is contained in the navX-MXP stm32 directory in
the Github repository.

Building

In Eclipse, select Project->Build. You might find it necessary to Project->Clean first to
remove old build output files.

The output of the build will be placed in the stm32/Debug directory. The extension of the file will
be .hex (Intel HEX Binary format).

88

http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junosr2
http://wiki.eclipse.org/FAQ_How_do_I_install_new_plug-ins%3F
http://opensource.zylin.com/embeddedcdt.html

Advanced
Firmware Customization

You can either download this file via the ST Microelectronics DfuSe utility, or you can download
it via the ST-LINK/V2 adapter (see instructions on debugging below).

In-Circuit Debugging (optional, but highly recommended)

ST-LINK/\V2

ST-LINK/V2 JTAG in-circuit debugger was used, this is very inexpensive and works very well.

The ST-LINK/V2 can be purchased at www.digikey.com (among others) for
approximately $40.

Additional utilities for the ST-LINK/V2 (for windows) are available on the STM website.

Connecting the ST-LINK/V2 to the navX-MXP Circuit Board

You will need to solder a 4-pin header to the navX-MXP board in order to connect debug
on the navX-MXP’s STM32F411 microcontroller. Then, you will need to connect 4 wires
from the connector to the corresponding location on the ST-LINK/V2 connector.
Instructions on how to do this can be found at the following URL:

https://www.micromouseonline.com/2011/11/05/stlink-swd-for-stm32/

Install OpenOCD

In order to interface eclipse with the ST-LINK/V2 JTAG in-circuit debugger, the OpenOCD
Server is used.

OpenOCD, version 0.9.0 (windows version available at

https://www.freddiechopin.info/en/articles/34-news/92-openocd-w-wersji-080)

89

http://www.micromouseonline.com/2011/11/05/stlink-swd-for-stm32/
http://www.freddiechopin.info/en/articles/34-news/92-openocd-w-

Advanced
Firmware Customization

OpenOCD includes A gdb server that runs with the ST-LINK/V2.

e MPORTANT NOTE: THe 0.9.0 release of OpenOCD contains a bugfix; earlier releases
of OpenOCD from cannot communicate correctly with the STM32F411 microcontroller
used in the navX-MXP. If you are not able to acquire this release of OpenOCD, please
contact support@kauailabs.com for information on how to proceed.

Configure Eclipse to run OpenOCD

Run->External Tools->External Tools Configuration...

Add a new configuration, name it “OpenOCD”

In the “main” tab, under Location, provide the path to the location of Open OCD. E.g.,
C:\OpenOCD\openocd-09.0\bin-x64\openocd-x64-0.9.0.exe

In the same “main” tab, in the Arguments window, enter the following:

-f C:\OpenOCD\openocd-0.9.0\scripts\interface\stlink-v2.cfg -f
C:\OpenOCD\openocd-0.9.0\scripts\target\stm32f4x_stlink.cfg

To start the OpenOCD Server, Select Run->ExternalTools?->OpenOCD (where
OpenOCD is the name provided earlier on the “main” tab)

Once the OpenOCD Server has started, the debug session can be started.

90

https://code.google.com/p/navxmxp/w/edit/ExternalTools

Advanced
Firmware Customization

Starting a Debug Session

6b) To start a debug session, first create a debug configuration:

e Select Run->Debug Configurations...
e Select “Zylin Embedded Debug (Cygwin)”

Then, add a new configuration (e.g., (navX-MXP OpenOCD Debug Session”); the new
configuration will be a child node of Zylin Embedded Debug (Cygwin)

On the Debugger Tab:

Set GDB Debugger to arm-none-eabi-gdb
Set GDB Command File to <navx-mxp-distribution_directory\stm32\gdb\nav10.script
Select “Verbose console mode”

NOTE: You will need to edit the nav10.script file to reference your particular directory
path to the “navx-mxp-distribution-directory” you unpacked the navx mxp distribution
.Zip into.

Once the debug configuration is created, and the open ocd session is started, start
debugging via Run->Debug

navXUl Customization
The navXUI Source Code is Open-Source and can be customized using the following
instructions:

e Download and install the free . NOTE: the current navXUI code is compatible with
version 3.0beta5 of the Processing development environment.

e Checkout the navX MXP source code on GitHub.

e Copy the contents of the navX-MXP source code’s ‘processing’ directory to <User
Directory>\Processing directory.

e Open the Processing IDE and then open the navXUI sketch via the File->Sketchbook

91

https://github.com/kauailabs/navxmxp

Advanced
navXUl Customization

menu.
e Compile/Run the navXUI by selecting the Sketch->Run menu.

If your computer has more than one serial port, you will need to select the appropriate serial port
(corresponding to the USB serial port navX-MXP is connected to) from the COM port selection
drop-down list in the top-right of the navXUI display.

Technical References

The references on this page are provided to help students gain a deeper understanding of the
algorithms, technologies and tools used within the navX-MXP and other Inertial Measurement
Unit (IMU) and Attitude/Heading Reference System (AHRS) products. Additionally, links to other
notable open-source works which could perhaps be adapted to work on the navX-MXP are
included.

Algorithms

Complementary Filter Algorithm

Magnetometer Calibration and Tilt Compensation

Implementing Positioning Algorithms Using Accelerometers

Technology

MEMS

MEMS Gyroscopes

Magnetometers

Tools

Eagle PCB Tutorial

Other Notable Open Source IMU Projects

AeroQuad

92

https://www.pieter-jan.com/node/11
https://www.sensorsmag.com/sensors/motion-velocity-displacement/compensating-tilt-hard-iron-and-soft-iron-effects-6475
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/ImplementingPositioningAlgorithmsUsingAccelerometers.pdf
https://www.memsnet.org/mems/what_is.html
https://electroiq.com/blog/2010/11/introduction-to-mems-gyroscopes/
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Magnetometer.html
https://learn.sparkfun.com/tutorials/how-to-install-and-setup-eagle
https://code.google.com/p/aeroquad/
http://www.tcpdf.org

	Table of Contents
	Overview
	navX-MXP
	Features
	Technical Specifications
	"Behind the Design"
	Frequently-asked Questions

	Installation
	Installation
	RoboRIO Installation
	FTC Installation
	Orientation
	OmniMount
	I/O Expansion
	Alternative Installation Options
	Creating an Enclosure

	Software
	Software
	RoboRIO Libraries
	Android Library (FTC)
	Linux Library
	Arduino Library
	navXUI
	Tools

	Examples
	Examples
	Field-Oriented Drive (FRC)
	Rotate to Angle (FRC)
	Automatic Balancing (FRC)
	Collision Detection (FRC)
	Motion Detection (FRC)
	Data Monitor (FRC)
	MXP I/O Expansion (FRC)

	Guidance
	Best Practices
	Terminology
	Selecting an Interface
	Gyro/Accelerometer Calibration
	Magnetometer Calibration Tool
	Yaw Drift

	Support
	Support
	Firmware Archive
	Factory Test Procedure
	Software Archive

	Advanced
	Serial Protocol
	Register Protocol
	Open-source Hardware/Software
	Firmware Customization
	navXUI Customization
	Technical References

